File(s) not publicly available
Prediction of soil macro- and micro-elements in sieved and ground air-dried soils using laboratory-based hyperspectral imaging technique
journal contribution
posted on 2019-09-05, 00:00 authored by M Malmir, I Tahmasbian, Z Xu, MB Farrar, Shahla Hosseini BaiHyperspectral image analysis in laboratory-based settings has the potential to estimate soil elements. This study aimed to explore the effects of soil particle size on element estimation using visible-near infrared (400–1000 nm) hyperspectral imaging. Images were captured from 116 sieved and ground soil samples. Data acquired from hyperspectral images (HSI) were used to develop partial least square regression (PLSR) models to predict soil available aluminum (Al), boron (B), calcium (Ca), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), sodium (Na), phosphorus (P) and zinc (Zn). The soil available Al, Fe, K, Mn, Na and P were not predicted with high precision. However, the developed PLSR models predicted B (R2 CV = 0.62 and RMSECV = 0.15), Ca (R2 CV = 0.81 and RMSECV = 260.97), Cu (R2 CV = 0.74 and RMSECV = 0.27), Mg (R2 CV = 0.80 and RMSECV = 43.71) and Zn (R2 CV = 0.76 and RMSECV = 0.97) in sieved soils. The PLSR models using reflectance of ground soil were also developed for B (R2 CV = 0.53 and RMSECV = 0.16), Ca (R2 CV = 0.81 and RMSECV = 260.79), Cu (R2 CV = 0.73 and RMSECV = 0.29), Mg (R2 CV = 0.79 and RMSECV = 45.45) and Zn (R2 CV = 0.76 and RMSECV = 0.97). RMSE of different PLSR models, developed from sieved and ground soils for the corresponding elements did not significantly differ based on the Levene's test. Therefore, this study indicated that it was not necessary to grind soil samples to predict elements using HSI. © 2018 Elsevier B.V.
Funding
Category 1 - Australian Competitive Grants (this includes ARC, NHMRC)
History
Volume
340Start Page
70End Page
80Number of Pages
11eISSN
1872-6259ISSN
0016-7061Publisher
Elsevier BVPublisher DOI
Language
enPeer Reviewed
- Yes
Open Access
- No
Acceptance Date
2018-12-27External Author Affiliations
University of the Sunshine Coast; Griffith University; Wagga Wagga Agricultural Institute; Tarbiat Modares University, IranEra Eligible
- Yes
Journal
GeodermaUsage metrics
Keywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC