File(s) not publicly available

Predicting ecosystem carbon balance in a warming Arctic: The importance of long-term thermal acclimation potential and inhibitory effects of light on respiration

journal contribution
posted on 23.10.2018, 00:00 by BC McLaughlin, Chengyuan Xu, EB Rastetter, KL Griffin
The carbon balance of Arctic ecosystems is particularly sensitive to global environmental change. Leaf respiration (R),a temperature-dependent key process in determining the carbon balance, is not well-understood in Arctic plants. The potential for plants to acclimate to warmer conditions could strongly impact future global carbon balance. Two key unanswered questions are (1) whether short-term temperature responses can predict long-term respiratory responses to growth in elevated temperatures and (2) to what extent the constant daylight conditions of the Arctic growing sea-son inhibit leaf respiration. In two dominant Arctic species Eriophorum vaginatum (tussock grass) and Betula nana(woody shrub), we assessed the extent of respiratory inhibition in the light (RL/RD), respiratory response to short-term temperature change, and respiratory acclimation to long-term warming treatments. We found that R of both species is strongly inhibited by light (averaging 35% across all measurement temperatures). In E. vaginatum both R Land RD acclimated to the long-term warming treatment, reducing the magnitude of respiratory response relative to the short-term response to temperature increase. In B. nana, both R Land RD responded to short-term temperature increase but showed no acclimation to the long-term warming. The ability to predict plant respiratory response to global warming with short-term temperature responses will depend on species-specific acclimation potential and thedifferential response of RLand RDto temperature. With projected woody shrub encroachment in Arctic tundra and continued warming, changing species dominance between these two functional groups, may impact ecosystem respiratory response and carbon balance.

Funding

Other

History

Volume

20

Issue

6

Start Page

1901

End Page

1912

Number of Pages

12

eISSN

1365-2486

ISSN

1354-1013

Publisher

Wiley-Blackwell, UK

Peer Reviewed

Yes

Open Access

No

Acceptance Date

17/12/2013

External Author Affiliations

University of California at Berkeley, USA, Griffith University, University of the Sunshine Coast, The Ecosystems Center, Marine Biological Laboratory, USA, Columbia University,, USA,

Author Research Institute

Institute for Future Farming Systems

Era Eligible

Yes

Journal

Global Change Biology

Exports