CQUniversity
Browse

Particle filter approach to dynamic state estimation of generators in power systems

journal contribution
posted on 2018-07-03, 00:00 authored by Kianoush EmamiKianoush Emami, T Fernando, HHC Iu, H Trinh, KP Wong
This paper presents a novel particle filter based dynamic state estimation scheme for power systems where the states of all the generators are estimated. The proposed estimation scheme is decentralized in that each estimation module is independent from others and only uses local measurements. The particle filter implementation makes the proposed scheme numerically simple to implement. What makes this method superior to the previous methods which are mainly based on the Kalman filtering technique is that the estimation can still remain smooth and accurate in the presence of noise with unknown changes in covariance values. Moreover, this scheme can be applied to dynamic systems and noise with both Gaussian and non-Gaussian distributions. © 1969-2012 IEEE.

History

Volume

30

Issue

5

Start Page

2665

End Page

2675

Number of Pages

11

ISSN

0885-8950

Publisher

IEEE, USA

Peer Reviewed

  • Yes

Open Access

  • No

External Author Affiliations

University of Western Australia; Deakin University

Era Eligible

  • Yes

Journal

IEEE Transactions on Power Systems