File(s) not publicly available

Optimisation of second-generation biodiesel production from Australian native stone fruit oil using response surface method

journal contribution
posted on 02.05.2019, 00:00 by Mohammad Anwar, Mohammad Rasul, Nanjappa Ashwath, Md Mofijur Rahman
In this study, the production process of second-generation biodiesel from Australian native stone fruit have been optimised using response surface methodology via an alkali catalysed transesterification process. This process optimisation was performed varying three factors, each at three different levels. Methanol: oil molar ratio, catalyst concentration (wt %) and reaction temperature were the input factors in the optimisation process, while biodiesel yield was the key model output. Both 3D surface plots and 2D contour plots were developed using MINITAB 18 to predict optimum biodiesel yield. Gas chromatography (GC) and Fourier transform infrared (FTIR) analysis of the resulting biodiesel was also done for biodiesel characterisation. To predict biodiesel yield a quadratic model was created and it showed an R2 of 0.98 indicating the satisfactory performance of the model. Maximum biodiesel yield of 95.8% was obtained at a methanol: oil molar ratio of 6:1, KOH catalyst concentration of 0.5 wt % and a reaction temperature of 5 ◦C. At these reaction conditions, the predicted biodiesel yield was 95.9%. These results demonstrate reliable prediction of the transesterification process by Response surface methodology (RSM). The results also show that the properties of the synthesised Australian native stone fruit biodiesel satisfactorily meet the ASTM D6751 and EN14214 standards. In addition, the fuel properties of Australian native stone fruit biodiesel were found to be similar to those of conventional diesel fuel. Thus, it can be said that Australian native stone fruit seed oil could be used as a potential second-generation biodiesel source as well as an alternative fuel in diesel engines. © 2018 by the authors.

History

Volume

11

Issue

10

Start Page

1

End Page

18

Number of Pages

18

eISSN

1996-1073

Publisher

MDPI AG, Switzerland

Additional Rights

CC BY 4.0

Peer Reviewed

Yes

Open Access

Yes

Acceptance Date

25/09/2018

Era Eligible

Yes

Journal

Energies

Licence

Exports