File(s) not publicly available
Multi-objective particle swarm optimisation approach for production-inventory control systems
journal contribution
posted on 2019-03-20, 00:00 authored by Huthaifa Al-Khazraji, Colin ColeColin Cole, Wanwu GuoWanwu GuoPurpose: This paper aims to optimise the dynamic performance of production–inventory control systems in terms of minimisation variance ratio between the order rate and the consumption, and minimisation the integral of absolute error between the actual and the target level of inventory by incorporating the Pareto optimality into particle swarm optimisation (PSO). Design/method/approach: The production–inventory control system is modelled and optimised via control theory and simulations. The dynamics of a production–inventory control system are modelled through continuous time differential equations and Laplace transformations. The simulation design is conducted by using the state–space model of the system. The results of multi-objective particle swarm optimisation (MOPSO) are compared with published results obtained from weighted genetic algorithm (WGA) optimisation. Findings: The results obtained from the MOPSO optimisation process ensure that the performance is systematically better than the WGA in terms of reducing the order variability (bullwhip effect) and improving the inventory responsiveness (customer service level) under the same operational conditions. Research limitations/implications: This research is limited to optimising the dynamics of a single product, single-retailer single-manufacturer process with zero desired inventory level. Originality/value: PSO is widely used and popular in many industrial applications. This research shows a unique application of PSO in optimising the dynamic performance of production–inventory control systems. © 2018, Emerald Publishing Limited.
Funding
Category 3 - Industry and Other Research Income
History
Volume
13Issue
4Start Page
1037End Page
1056Number of Pages
20eISSN
1746-5672ISSN
1746-5664Publisher
Emerald Publishing, UKPublisher DOI
Peer Reviewed
- Yes
Open Access
- No
Acceptance Date
2018-08-20Author Research Institute
- Centre for Railway Engineering
Era Eligible
- Yes
Journal
Journal of Modelling in ManagementUsage metrics
Keywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC