File(s) not publicly available

Modelling and simulation of performance and combustion characteristics of diesel engine

journal contribution
posted on 11.09.2019, 00:00 authored by Md Nurun NabiMd Nurun Nabi, Mohammad RasulMohammad Rasul, Prasad GudimetlaPrasad Gudimetla
The main objective of this study was to develop a thermodynamic model to analyse engine performance and combustion behavior of a single cylinder, four-stroke, naturally aspirated, direct injection (DI) diesel engine. The model was developed with a commercial GT-Power software. Various sub-models for different systems including intake, exhaust, fuel injection, combustion, and heat transfer rate were combined for thermodynamic analysis of engine performance and combustion behaviour. The engine rotational speed, start of injection timing and compression ratio were considered as variables. The engine rotational speeds were varied from 800 rpm to 2500 rpm, the start of injection timings was ranged from 15o crank angle (CA) before top dead centre (bTDC) to 15o CA after top dead centre (aTDC), and the compression ratios were changed from 13 to 25. Performance parameters such as indicated and brake power, brake thermal efficiency, friction, etc. and combustion parameters such as heat transfer rate and in-cylinder pressure are analysed at different engine rotational speed, injection timing, and compression ratio, and discussed accordingly. The optimum performance such as BTE, BT and BMEP were found at the engine speed of 1700 rpm, a start of injection timing of 10o bTDC, and a compression ratio of 20. © 2019 The Authors. Published by Elsevier Ltd.

Funding

Category 2 - Other Public Sector Grants Category

History

Volume

160

Start Page

662

End Page

669

Number of Pages

8

eISSN

1876-6102

Publisher

Elsevier, Netherlands

Additional Rights

CC BY-NC-ND 4.0

Peer Reviewed

Yes

Open Access

No

Era Eligible

Yes

Journal

Energy Procedia