File(s) not publicly available

Mango maturity classification instead of maturity index estimation: A new approach towards handheld NIR spectroscopy

journal contribution
posted on 22.11.2021, 22:19 by Syed Sohaib Ali Shah, Ayesha Zeb, Waqar S Qureshi, Aman U Malik, Mohsin Tiwana, Kerry WalshKerry Walsh, Muhammad Amin, Waleed Alasmary, Eisa Alanazi
Estimation of on-tree mango maturity is essential for the prediction of harvest time. Dry matter (DM) is a useful index in deciding mango maturity, and post-harvest quality. Existing NIR based maturity meters employ machine learning regressors to predict a maturity index value (such as DM, oBrix, or etc.) and then impose a hard threshold on predicted value to estimate maturity state of the fruit. In this paper, a new approach for non-destructive hand-held fruit maturity meter is investigated. The developed approach directly classifies the maturity state (mature/immature) using a classifier trained on maturity labels assigned through standard DM thresholds for investigated mango varieties. To develop the hardware of the device, a commercial-off-the-shelf development kit of NIR micro-spectrometer in the spectral range of 400–1100 nm was used with an embedded computational hardware, a micro-halogen lamp, a lithium battery, and a display. The application software (developed in C++) is designed to collect interactance spectra, remove noise, reduce dimensionality, and classify maturity state. Performance of the developed approach is evaluated by on-tree test samples of mango fruit of different season. Comparison of both the literature reported indirect maturity estimation and proposed direct maturity classification is conducted. The test results show that the maximum accuracy achieved using indirect maturity estimation using hard thresholds is 55.9%. Whereas direct maturity classification using KNN achieved 88.2% accuracy in predicting the maturity state (mature/immature) of the test mangoes. Overall results show that the developed DM mango maturity method has considerable potential to detect maturity state of mangoes in practical situations.

History

Volume

115

Start Page

1

End Page

9

Number of Pages

9

ISSN

1350-4495

Publisher

Elsevier

Language

en

Peer Reviewed

Yes

Open Access

No

Acceptance Date

07/01/2021

External Author Affiliations

Umm-Al Qura University, Saudi Arabia; Islamia University of Bahawalpur, University of Agriculture, National University of Sciences and Technology, Pakistan

Author Research Institute

Institute for Future Farming Systems

Era Eligible

Yes

Journal

Infrared Physics and Technology

Article Number

103639