File(s) not publicly available
METTLE: A METamorphic Testing approach to assessing and validating unsupervised machine LEarning systems
journal contribution
posted on 2020-12-07, 00:00 authored by X Xie, Z Zhang, TY Chen, Y Liu, Pak PoonPak Poon, B XuUnsupervised machine learning is the training of an artificial intelligence system using information that is neither classified nor labeled, with a view to modeling the underlying structure or distribution in a dataset. Since unsupervised machine learning systems are widely used in many real-world applications, assessing the appropriateness of these systems and validating their implementations with respect to individual users’ requirements and specific application scenarios/contexts are indisputably two important tasks. Such assessment and validation tasks, however, are fairly challenging due to the absence of a priori knowledge of the data. In view of this challenge, we develop a METamorphic Testing approach to assessing and validating unsupervised machine LEarning systems, abbreviated as METTLE. Our approach provides a new way to unveil the (possibly latent) characteristics of various machine learning systems, by explicitly considering the specific expectations and requirements of these systems from individual users’ perspectives. To support METTLE, we have further formulated 11 generic metamorphic relations (MRs), covering users’ generally expected characteristics that should be possessed by machine learning systems. We have performed an experiment and a user evaluation study to evaluate the viability and effectiveness of METTLE. Our experiment and user evaluation study have shown that, guided by user-defined MR-based adequacy criteria, end users are able to assess, validate, and select appropriate clustering systems in accordance with their own specific needs. Our investigation has also yielded insightful understanding and interpretation of the behavior of the machine learning systems from an end-user software engineering’s perspective, rather than a designer’s or implementor’s perspective, who normally adopts a theoretical approach.
Funding
Other
History
Volume
69Issue
4Start Page
1293End Page
1322eISSN
1558-1721ISSN
0018-9529Publisher
Institute of Electrical and Electronics EngineersPublisher DOI
Additional Rights
CC BY 4.0Peer Reviewed
- Yes
Open Access
- Yes
Acceptance Date
2020-02-04External Author Affiliations
Nanyang Technological University, Singapore; Nanjing University, Wuhan University, China; Swinburne University of Technology;Era Eligible
- Yes