There is growing evidence that the use of simulation in teaching is a key means of improving learning, skills, and outcomes, particularly for practical skills. In the health sciences, the use of high-fidelity task trainers has been shown to be ideal for reducing cognitive load and leading to enhanced learning outcomes. However, how do we make these task trainers available to students studying at a distance? To answer this question, this paper presents results from the implementation and sustained testing of a mobile mixed reality intervention in an Australian distance paramedic science classroom. The context of this mobile mixed reality simulation study, provided through a user-supplied mobile phone incorporating 3D printing, virtual reality, and augmented reality, is skills acquisition in airways management, focusing on direct laryngoscopy with foreign body removal. The intervention aims to assist distance education learners in practising skills prior to attending mandatory residential schools, building a baseline equality between those students who study face to face and those at a distance. Outcomes from the study showed statistically significant improvements in the use of the simulation across several key performance indicators in the distance learners, but also demonstrated problems to overcome in the pedagogical method.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.