Hyperspectral imaging for non-destructive prediction of total nitrogen concentration in almond kernels
journal contribution
posted on 2019-04-02, 00:00 authored by T Gama, HM Wallace, SJ Trueman, I Tahmasbian, SH Bai© 2018 ISHS. There is increasing awareness of the need to consume high-quality foods because of health concerns. Food safety and health awareness campaigns have provided an impetus for non-destructive and real-time methods for food quality assessment. Total nitrogen is used as an indicator of crude protein content in foods and we examined the potential of hyperspectral imaging to predict total nitrogen concentration in four brands of almonds purchased from commercial retailers. A hyperspectral imaging system in the wavelength range 400-1000 nm was used in the study. A partial linear squares regression (PLSR) model was developed, which predicted total nitrogen concentration with a determination coefficient (R2p) of 0.82 and a root mean error square of calibration (RMSEC) of 0.16. These results indicated that hyperspectral imaging has great potential to predict total nitrogen concentration of almond kernels.
Funding
Category 1 - Australian Competitive Grants (this includes ARC, NHMRC)
History
Volume
1219Start Page
259End Page
264Number of Pages
6eISSN
2406-6168ISSN
0567-7572Publisher
International Society for Horticultural Science, BelgiumPublisher DOI
Full Text URL
Peer Reviewed
- Yes
Open Access
- No
Era Eligible
- Yes
Journal
Acta HorticulturaeUsage metrics
Keywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC