CQUniversity
Browse

Hyperspectral imaging for non-destructive prediction of total nitrogen concentration in almond kernels

journal contribution
posted on 2019-04-02, 00:00 authored by T Gama, HM Wallace, SJ Trueman, I Tahmasbian, SH Bai
© 2018 ISHS. There is increasing awareness of the need to consume high-quality foods because of health concerns. Food safety and health awareness campaigns have provided an impetus for non-destructive and real-time methods for food quality assessment. Total nitrogen is used as an indicator of crude protein content in foods and we examined the potential of hyperspectral imaging to predict total nitrogen concentration in four brands of almonds purchased from commercial retailers. A hyperspectral imaging system in the wavelength range 400-1000 nm was used in the study. A partial linear squares regression (PLSR) model was developed, which predicted total nitrogen concentration with a determination coefficient (R2p) of 0.82 and a root mean error square of calibration (RMSEC) of 0.16. These results indicated that hyperspectral imaging has great potential to predict total nitrogen concentration of almond kernels.

Funding

Category 1 - Australian Competitive Grants (this includes ARC, NHMRC)

History

Volume

1219

Start Page

259

End Page

264

Number of Pages

6

eISSN

2406-6168

ISSN

0567-7572

Publisher

International Society for Horticultural Science, Belgium

Peer Reviewed

  • Yes

Open Access

  • No

Era Eligible

  • Yes

Journal

Acta Horticulturae