Robust Kalman filtering design for continuous-time Markovian jump nonlinear systems with uncertain noise was investigated. Because of complexity of Markovian jump systems, the statistical characteristics of system noise and observation noise are time-varying or unmeasurable instead of being stationary. In view of robust estimation, maximum admissible upper bound of the uncertainty to noise covariance matrix was given based on system state estimation performance. As long as the noise uncertainty is limited within this bound via noise control, the Kalman filter has robustness against noise uncertainty, and stability of dynamic systems can be ensured. It is proved by game theory that this design is a robust mini-max filter. A numerical example shows the validity of this design.
Funding
Category 1 - Australian Competitive Grants (this includes ARC, NHMRC)