CQUniversity
Browse
- No file added yet -

Energy and exergy analyses of a flat plate solar collector using various nanofluids: An analytical approach

journal contribution
posted on 2021-10-18, 04:21 authored by RM Mostafizur, Mohammad RasulMohammad Rasul, Md Nurun NabiMd Nurun Nabi
Energy and exergy (EnE) efficiencies are considered the most important parameters to compare the performance of various thermal systems. In this paper, an analysis was carried out for EnE efficiencies of a flat plate solar collector (FPSC) using four different kinds of nanofluids as flowing mediums, namely, Al2O3/water, MgO/water, TiO2/water, and CuO/water, and compared with water as a flowing medium (traditional base fluid). The analysis considered nanofluids made of nanomaterials’ volume fractions of 1–4% with water. The volume flow rates of nanofluids and water were 1 to 4 L/min. The solar collector′s highest EnE efficiency values were obtained for CuO/water nanofluid among the four types of nanofluids mentioned above. The EnE efficiencies of the CuO nanofluid‐operated solar collector were 38.21% and 34.06%, respectively, which is significantly higher than that of water‐operated solar collectors. For the same volume flow rate, the mass flow rate was found to be 15.95% higher than water for the CuO nanofluid. The EnE efficiency of FPSC can also be increased by increasing the density and reducing the specific heat of the flowing medium.

History

Volume

14

Issue

14

Start Page

1

End Page

19

Number of Pages

19

eISSN

1996-1073

Publisher

MDPI

Additional Rights

CC BY 4.0

Language

en

Peer Reviewed

  • Yes

Open Access

  • Yes

Acceptance Date

2021-07-13

Era Eligible

  • Yes

Journal

Energies

Article Number

4305