CQUniversity
Browse

Energy-efficient scheduling of streaming applications in VFI-NoC-HMPSoC based edge devices

journal contribution
posted on 2021-06-25, 00:07 authored by Umair Ullah TariqUmair Ullah Tariq, Haider Ali, Lu Liu, John Panneerselvam, James Hardy
Energy-aware high-performance computing is becoming a challenging facet for streaming applications at edge devices in Internet-of-Things (IoT) due to the high computational complexity involved. Therefore, the number of processors has increased significantly on the multiprocessor system subsequently, Voltage Frequency Island (VFI) recently adopted for an effective energy management mechanism in the large scale multiprocessor chip designs. In this paper, energy-aware scheduling of real-time streaming applications on edge-devices is investigated. First, an innovative re-timing based technique is developed to transform the dependent workload into an independent task model to avail resources and the wasted slack in the processors with a possible minimal prologue. Moreover, unlike the existing population-based optimization algorithms, a novel population-based algorithm, ARSH-FATI is proposed that can dynamically switch between explorative and exploitative search modes at run-time for performance trade-off. Finally, a communication contention-aware Earliest Edge Consistent Deadline First (EECDF) scheduling algorithm is presented. Our static scheduler ARHS-FATI collectively performs task mapping and ordering. Consequently, its performance is superior to the existing state-of-the-art approach proposed for homogeneous VFI based MPSoCs.

History

Start Page

1

End Page

17

Number of Pages

17

eISSN

1868-5145

ISSN

1868-5137

Publisher

Springer Science and Business Media LLC

Language

en

Peer Reviewed

  • Yes

Open Access

  • No

Acceptance Date

2020-11-23

External Author Affiliations

University of Derby, University of Leicester, UK

Era Eligible

  • Yes

Journal

Journal of Ambient Intelligence and Humanized Computing