File(s) not publicly available
Effect of relative intensity of wind load on the RC column reliability in tall buildings
Wind loads are very important in the design of tall buildings as often the load combinations containing the wind load govern the design. As for reliability, however, because of the higher inherent uncertainty in the wind load in comparison to the gravity load, safety indices decrease as the ratio of wind load to gravity load increases. The safety indices in RC columns depend on the nominal wind to gravity load ratios. Due to the interaction between bending moment and axial force, a single ratio cannot be defined, because the eccentricity is not similar for wind and gravity loads. In this paper, the ratio of wind to gravity loads is considered separately for axial force and bending moments. Unlike conventional approach, here it is assumed that the wind and gravity loads' eccentricities are not equal, and the final load eccentricity used in either the design or the reliability analysis is a function of applied loads. The results demonstrate that the sensitivity of RC columns' safety indices to bending moment ratios is higher than that of axial force ratios. Furthermore, the variation of RC columns' safety indices with a low rebar percentage is very different from RC columns with high rebar percentages. Copyright © 2010 John Wiley & Sons, Ltd.
History
Volume
21Issue
7Start Page
492End Page
504Number of Pages
13eISSN
1541-7794ISSN
1541-7808Publisher
WileyPublisher DOI
Peer Reviewed
- Yes
Open Access
- No
External Author Affiliations
University of QueenslandEra Eligible
- Yes
Journal
Structural Design of Tall and Special BuildingsUsage metrics
Categories
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC