CQUniversity
Browse

File(s) not publicly available

Deep reinforcement learning enhanced greedy optimization for online scheduling of batched tasks in cloud HPC systems

journal contribution
posted on 2024-04-22, 23:54 authored by Y Yang, Hong Shen
In a large cloud data center HPC system, a critical problem is how to allocate the submitted tasks to heterogeneous servers that will achieve the goal of maximizing the system's gain defined as the value of completed tasks minus system operation costs. We consider this problem in the online setting that tasks arrive in batches and propose a novel deep reinforcement learning (DRL) enhanced greedy optimization algorithm of two-stage scheduling interacting task sequencing and task allocation. For task sequencing, we deploy a DRL module to predict the best allocation sequence for each arriving batch of tasks based on the knowledge (allocation strategies) learnt from previous batches. For task allocation, we propose a greedy strategy that allocates tasks to servers one by one online following the allocation sequence to maximize the total gain increase. We show that our greedy strategy has a performance guarantee of competitive ratio $\frac{1}{1+\kappa }$11+κ to the optimal offline solution, which improves the existing result for the same problem, where $\kappa$κ is upper bounded by the maximum cost-to-gain ratio of each task. While our DRL module enhances the greedy algorithm by providing the likely-optimal allocation sequence for each batch of arriving tasks, our greedy strategy bounds DRL's prediction error within a proven worst-case performance guarantee for any allocation sequence. It enables a better solution quality than that obtainable from both DRL and greedy optimization alone. Extensive experiment evaluation results in both simulation and real application environments demonstrate the effectiveness and efficiency of our proposed algorithm. Compared with the state-of-the-art baselines, our algorithm increases the system gain by about 10% to 30%. Our algorithm provides an interesting example of combining machine learning (ML) and greedy optimization techniques to improve ML-based solutions with a worst-case performance guarantee for solving hard optimization problems.

Funding

Category 2 - Other Public Sector Grants Category

History

Volume

33

Issue

11

Start Page

3003

End Page

3014

Number of Pages

12

eISSN

1558-2183

ISSN

1045-9219

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Peer Reviewed

  • Yes

Open Access

  • No

Era Eligible

  • Yes

Journal

IEEE Transactions on Parallel and Distributed Systems

Usage metrics

    CQUniversity

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC