Carbon sink strength of nodules but not other organs modulates photosynthesis of faba bean (Vicia faba) grown under elevated [CO2 ] and different water supply
journal contribution
posted on 2020-06-15, 00:00authored byS Parvin, S Uddin, Sabine Tausz-Posch, R Armstrong, Michael Tausz
Photosynthetic stimulation by elevated [CO2 ] (e[CO2 ]) may be limited by the capacity of sink organs to use photosynthates. In many legumes, N2 -fixing symbionts in root nodules provide an additional sink, so that legumes may be better able to profit from e[CO2 ]. However, drought not only constrains photosynthesis but also size and activity of sinks, and little is known about the interaction of e[CO2 ] and drought on carbon sink strength of nodules and other organs. To compare carbon sink strength, faba bean was grown under ambient (400 ppm) or elevated (700 ppm) atmospheric [CO2 ] and subjected to well-watered or drought treatments, and then exposed to 13 C pulse-labelling using custom-built chambers to track the fate of new photosynthates. Drought decreased 13 C uptake and nodule sink strength, and this effect was even greater under e[CO2 ], and associated with an accumulation of amino acids in nodules. This resulted in decreased N2 fixation, increased accumulation of new photosynthates (13 C/sugars) in leaves, which in turn can feed back on photosynthesis. Our study suggests that nodule C sink activity is key to avoid sink limitation in legumes under e[CO2 ], and legumes may only be able to achieve greater C gain if nodule activity is maintained.
Funding
Category 1 - Australian Competitive Grants (this includes ARC, NHMRC)