The technique of near and short wave near-infrared spectroscopy was assessed with respect to analysis of dry matter and lipid content of microalgae with potential for biodiesel production. Microalgal culture samples were filtered through GF/C filter papers and spectral measurements of wet and oven dried (60 °C overnight) filter papers over the ranges of 300–1,100 nm and 1,100–2,500 nm were recorded. Partial least square models on culture biomass and lipid content for combined species data were poor in terms of RMSECV, RCV and the ratio of RMSECV to SD. A single species model for C. vulgaris based on 1,100–2,500 nm spectra of dry filtrate supported a model with RMSECV, RCV and SDR values of0.32 g L−1, 0.955 and 3.38 for biomass and 0.089 g L−1, 0.874 and 2.06 with lipid, respectively. However, the dry filtrate models on biomass and lipid content performed poorly in the prediction of samples drawn from an independent series of C. vulgaris cultured under N-, P- and Fe-limited growth trial. Thus, while the near-infrared spectroscopy technique has potential for assessment of dry matter and lipid content of microalgal cultures using a dried filtrate sample, further workis required to examine the limits to model robustness.