Anti‐vaccination attitudes have been an issue since the development of the first vaccines. The increasing use of social media as a source of health information may contribute to vaccine hesitancy due to anti‐vaccination content widely available on social media, including Twitter. Being able to identify anti‐vaccination tweets could provide useful information for formulating strategies to reduce anti‐vaccination sentiments among different groups. This study aims to evaluate the performance of different natural language processing models to identify anti‐vaccination tweets that were published during the COVID‐19 pandemic. We compared the performance of the bidirectional encoder representations from transformers (BERT) and the bidirectional long shortterm memory networks with pre‐trained GLoVe embeddings (Bi‐LSTM) with classic machine learning methods including support vector machine (SVM) and naïve Bayes (NB). The results show that performance on the test set of the BERT model was: accuracy = 91.6%, precision = 93.4%, recall = 97.6%, F1 score = 95.5%, and AUC = 84.7%. Bi‐LSTM model performance showed: accuracy = 89.8%, precision = 44.0%, recall = 47.2%, F1 score = 45.5%, and AUC = 85.8%. SVM with linear kernel performed at: accuracy = 92.3%, Precision = 19.5%, Recall = 78.6%, F1 score = 31.2%, and AUC = 85.6%. Complement NB demonstrated: accuracy = 88.8%, precision = 23.0%, recall = 32.8%, F1 score = 27.1%, and AUC = 62.7%. In conclusion, the BERT models outperformed the Bi‐LSTM, SVM, and NB models in this task. Moreover, the BERT model achieved excellent performance and can be used to identify anti‐vaccination tweets in future studies.