CQUniversity
Browse

An assessment of the seascape genetic structure and hydrodynamic connectivity for subtropical seagrass restoration

journal contribution
posted on 2021-09-17, 04:23 authored by Emma JacksonEmma Jackson, Timothy M Smith, Paul H York, Jesper Nielsen, Andrew IrvingAndrew Irving, Craig DH Sherman
Seagrass ecosystems have suffered significant declines globally and focus is shifting to restoration efforts. A key component to successful restoration is an understanding of the genetic factors potentially influencing restoration success. This includes understanding levels of connectivity between restoration locations and neighboring seagrass populations that promote natural recovery (source and sink populations), the identification of potential donor populations, and assessment of genetic diversity of restored meadows and material used for restoration. In this study, we carry out genetic surveys of 352 individuals from 13 populations using 11 polymorphic microsatellite loci to inform seagrass restoration activities by: (1) understanding levels of genetic and genotypic diversity within meadows; and (2) understanding genetic structure and patterns of connectivity among these meadows to determine which source sites may be most appropriate to assist recovery of three restoration sites. The study identified high genotypic diversity within the locations analyzed from the Port of Gladstone and Rodd's Bay region, indicating sexual reproduction is important in maintaining populations. Overall, we detected significant genetic structuring among sites with the Bayesian structure analysis identifying genetic clusters that largely conformed to a northern, central, and southern region. This suggests limited gene flow between regions, although there does appear to be some connectivity within regions. The hydrodynamic models showed that seeds were largely locally retained, while fragments were more widely dispersed. Limited gene flow between regions suggests donor material for restoration should be sourced locally where possible.

History

Volume

29

Issue

1

Start Page

1

End Page

11

Number of Pages

11

eISSN

1526-100X

ISSN

1061-2971

Publisher

Wiley-Blackwell

Language

en

Peer Reviewed

  • Yes

Open Access

  • No

External Author Affiliations

Deakin University; University of Queensland; James Cook University

Era Eligible

  • Yes

Journal

Restoration Ecology

Article Number

e13269