There is a wide range of algae species originating from a variety of freshwater and saltwater habitats. These organisms form nutritional organic products via photosynthesis from simple inorganic substances such as carbon dioxide. Ruminants can utilize the non-protein nitrogen (N) and the cell walls in algae, along with other constituents such as minerals and vitamins. Over recent decades, awareness around climate change has generated new interest into the potential of algae to suppress enteric methane emissions when consumed by ruminants and their potential to sequester atmospheric carbon dioxide. Despite the clear potential benefits, large-scale algae-livestock feedstuff value chains have not been established due to the high cost of production, processing and transport logistics, shelf-life and stability of bioactive compounds and inconsistent responses by animals under controlled experiments. It is unlikely that algal species will become viable ingredients in extensive grazing systems unless the cost of production and practical systems for the processing, transport and feeding are developed. The algae for use in ruminant nutrition may not necessarily require the same rigorous control during the production and processing as would for human consumption and they could be grown in remote areas or in marine environments, minimizing competition with cropping, whilst still generating high value biomass and capturing important amounts of atmospheric carbon. This review will focus on single-cell algal species and the opportunistic use of algal by-products and on-site production.