File(s) stored somewhere else
Please note: Linked content is NOT stored on CQUniversity and we can't guarantee its availability, quality, security or accept any liability.
A survey on behavioral pattern mining from sensor data in Internet of Things
journal contribution
posted on 2021-07-14, 00:55 authored by MD Mamunur RashidMD Mamunur Rashid, Joarder Kamruzzaman, Mohammad M Hassan, Sakib Shahriar Shafin, Md Zakirul A BhuiyanThe deployment of large-scale wireless sensor networks (WSNs) for the Internet of Things (IoT) applications is increasing day-by-day, especially with the emergence of smart city services. The sensor data streams generated from these applications are largely dynamic, heterogeneous, and often geographically distributed over large areas. For high-value use in business, industry and services, these data streams must be mined to extract insightful knowledge, such as about monitoring (e.g., discovering certain behaviors over a deployed area) or network diagnostics (e.g., predicting faulty sensor nodes). However, due to the inherent constraints of sensor networks and application requirements, traditional data mining techniques cannot be directly used to mine IoT data streams efficiently and accurately in real-time. In the last decade, a number of works have been reported in the literature proposing behavioral pattern mining algorithms for sensor networks. This paper presents the technical challenges that need to be considered for mining sensor data. It then provides a thorough review of the mining techniques proposed in the recent literature to mine behavioral patterns from sensor data in IoT, and their characteristics and differences are highlighted and compared. We also propose a behavioral pattern mining framework for IoT and discuss possible future research directions in this area.
History
Volume
8Start Page
33318End Page
33341Number of Pages
24eISSN
2169-3536Publisher
IEEEPublisher DOI
Full Text URL
Additional Rights
CC BY 4.0Peer Reviewed
- Yes
Open Access
- Yes
Acceptance Date
2020-02-04External Author Affiliations
Federation University; King Saud University, Saudi Arabia; Islamic University of Engineering and Technology, Bangladesh; Fordham University, USAAuthor Research Institute
- Centre for Intelligent Systems
Era Eligible
- Yes