File(s) not publicly available
A signal-based fault detection and classification method for heavy haul wagons
journal contribution
posted on 2018-04-24, 00:00 authored by Chunsheng Li, S Luo, Colin ColeColin Cole, Maksym SpiryaginMaksym Spiryagin, Yan SunYan Sun© 2017 Informa UK Limited, trading as Taylor & Francis Group. This paper proposes a signal-based fault detection and isolation (FDI) system for heavy haul wagons considering the special requirements of low cost and robustness. The sensor network of the proposed system consists of just two accelerometers mounted on the front left and rear right of the carbody. Seven fault indicators (FIs) are proposed based on the cross-correlation analyses of the sensor-collected acceleration signals. Bolster spring fault conditions are focused on in this paper, including two different levels (small faults and moderate faults) and two locations (faults in the left and right bolster springs of the first bogie). A fully detailed dynamic model of a typical 40t axle load heavy haul wagon is developed to evaluate the deterioration of dynamic behaviour under proposed fault conditions and demonstrate the detectability of the proposed FDI method. Even though the fault conditions considered in this paper did not deteriorate the wagon dynamic behaviour dramatically, the proposed FIs show great sensitivity to the bolster spring faults. The most effective and efficient FIs are chosen for fault detection and classification. Analysis results indicate that it is possible to detect changes in bolster stiffness of ±25% and identify the fault location.
Funding
Category 3 - Industry and Other Research Income
History
Volume
55Issue
12Start Page
1807End Page
1822Number of Pages
16eISSN
1744-5159ISSN
0042-3114Publisher DOI
Peer Reviewed
- Yes
Open Access
- No
Acceptance Date
2017-05-20External Author Affiliations
South West Jiaotong University, Chengdu, ChinaAuthor Research Institute
- Centre for Railway Engineering
Era Eligible
- Yes
Journal
Vehicle System DynamicsUsage metrics
Categories
Keywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC