File(s) not publicly available
A novel method of curve fitting based on optimized extreme learning machine
In this article, we present a new method based on extreme learning machine (ELM) algorithm for solving nonlinear curve fitting problems. Curve fitting is a computational problem in which we seek an underlying target function with a set of data points given. We proposed that the unknown target function is realized by an ELM with introducing an additional linear neuron to correct the localized behavior caused by Gaussian type neurons. The number of hidden layer neurons of ELM is a crucial factor to achieve a good performance. An evolutionary computation algorithm–particle swarm optimization (PSO) technique is applied to determine the optimal number of hidden nodes. Several numerical experiments with benchmark datasets, simulated spectral data and measured data from high energy physics experiments have been conducted to test the proposed method. Accurate fitting has been accomplished for various tough curve fitting tasks. Comparing with the results of other methods, the proposed method outperforms the traditional numerical-based technique. This work clearly demonstrates that the classical numerical analysis problem-curve fitting can be satisfactorily resolved via the approach of artificial intelligence. © 2020, © 2020 Taylor & Francis.
History
Volume
34Issue
12Start Page
849End Page
865Number of Pages
17eISSN
1087-6545ISSN
0883-9514Publisher
Taylor & FrancisPublisher DOI
Peer Reviewed
- Yes
Open Access
- No
Author Research Institute
- Centre for Intelligent Systems
Era Eligible
- Yes
Journal
Applied Artificial IntelligenceUsage metrics
Categories
Keywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC