CQUniversity
Browse
- No file added yet -

A novel CNN model for classification of Chinese historical calligraphy styles in regular script font

Download (985.66 kB)
Chinese calligraphy, revered globally for its therapeutic and mindfulness benefits, encompasses styles such as regular (Kai Shu), running (Xing Shu), official (Li Shu), and cursive (Cao Shu) scripts. Beginners often start with the regular script, advancing to more intricate styles like cursive. Each style, marked by unique historical calligraphy contributions, requires learners to discern distinct nuances. The integration of AI in calligraphy analysis, collection, recognition, and classification is pivotal. This study introduces an innovative convolutional neural network (CNN) architecture, pioneering the application of CNN in the classification of Chinese calligraphy. Focusing on the four principal calligraphy styles from the Tang dynasty (690–907 A.D.), this research spotlights the era when the traditional regular script font (Kai Shu) was refined. A comprehensive dataset of 8282 samples from these calligraphers, representing the zenith of regular style, was compiled for CNN training and testing. The model distinguishes personal styles for classification, showing superior performance over existing networks. Achieving 89.5–96.2% accuracy in calligraphy classification, our approach underscores the significance of CNN in the categorization of both font and artistic styles. This research paves the way for advanced studies in Chinese calligraphy and its cultural implications.

History

Volume

24

Issue

1

Start Page

1

End Page

19

Number of Pages

19

eISSN

1424-8220

ISSN

1424-8220

Publisher

MDPI AG

Publisher License

CC BY

Additional Rights

CC BY 4.0

Language

en

Peer Reviewed

  • Yes

Open Access

  • Yes

Acceptance Date

2023-12-25

Medium

Electronic

Journal

Sensors

Article Number

197

Usage metrics

    CQUniversity

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC