File(s) not publicly available
Performance enhancement of intrusion detection system using bagging ensemble technique with feature selection
conference contribution
posted on 2021-06-24, 23:50 authored by MD Mamunur RashidMD Mamunur Rashid, Joarder Kamruzzaman, Mohiuddin Ahmed, Nahina IslamNahina Islam, Santoso WibowoSantoso Wibowo, Steven GordonSteven GordonAn intrusion detection system’s (IDS) key role is to recognise anomalous activities from both inside and outside the network system. In literature, many machine learning techniques have been proposed to improve the performance of IDS. To create a good IDS, a single classifier might not be powerful enough. To overcome this bottleneck researchers focus on hybrid/ensemble techniques. Such methods are more complex and computation intensive, but they provide greater accuracy and lower false alarm rates (FAR). In this paper, we propose a bagging ensemble that improves the performance of IDS in terms of accuracy and FAR where the NSL-KDD dataset has been used to classify benign and abnormal traffic. We have also applied the information gain-based feature selection method to select highly relevant features for improving the accuracy of the proposed technique and achieved 84.93 % accuracy and 2.45 % FAR on the test dataset.
History
Start Page
1End Page
5Number of Pages
5Start Date
2020-12-16Finish Date
2020-12-18ISBN-13
9781665419741Location
Gold Coast, Qld., AustraliaPublisher
IEEEPlace of Publication
Piscataway, NJPublisher DOI
Full Text URL
Peer Reviewed
- Yes
Open Access
- No
External Author Affiliations
Federation University; Edith Cowan UniversityEra Eligible
- Yes