Implementation of a new bogie concept is an integrated part of the vehicle design which must follow a rigorous testing and validation procedure. Use of multibody simulation helps to reduce the amount of time and effort required in selecting a new concept design by analysing results of simulated dynamic behaviour of the proposed design. However, the multibody simulation software mainly looks at the dynamics of a single vehicle; hence, forces from the train configuration operational dynamics are often absent in such simulations.
Effects of longitudinal-lateral and longitudinal-vertical interactions between rail vehicles have been found to affect the stability of long trains [1,2]. The effect of wedge design on the vertical dynamics of a bogie has also been discussed in [3,4]. It is important to apply the lateral and vertical forces from a train simulation into a single multibody model of a wagon to check its behaviour when operating in train configuration.
In this paper, a novel methodology for the investigation of new bogie designs has been proposed based on integrating dynamic train simulation and the multibody vehicle modelling concept that will help to efficiently achieve the most suitable design of the bogie. The proposed methodology suggests that simulation of any configuration of bogie needs to be carried out in three stages. As the first stage, the bogie designs along with the wagon configurations need to be presented as a multibody model in multibody simulation software to test the suitability of the concept. The model checking needs to be carried out in accordance with the wagon model acceptance procedure established in [5].
As the second stage, the wagon designs need to be tested in train configurations using a longitudinal train dynamics simulation software such as ‘CRE-LTS’ [2], where a train set consisting of the locomotives and wagons will be simulated to give operational wagon parameters such as lateral and vertical coupler force components.
As the third stage, the detailed dynamic analysis of bogies and wagons needs to be performed with a multibody software such as ‘Gensys’ where lateral and vertical coupler force components from the train simulation (second stage) will be applied on the multibody model to replicate the worst case scenario. The proposed methodology enhances the selection procedure of any alternate bogie concept by the application of simulated train and vehicle dynamics. The simulated case studies show that simulation of wagon dynamic behaviour in multibody software combined with data obtained from longitudinal train simulation is not only possible, but it can identify issues with a bogie design that can otherwise be overlooked.