Electrical resistivity is an important parameter to be monitored for the conditional assessment and health monitoring of aging and new concrete infrastructure. In this paper, we report the design and development of a frequency sweep based sensing technology for non-destructive electrical resistivity measurement of concrete. Firstly, a sensing system prototype was developed based on the Wenner probe arrangement for the electrical resistivity measurements. This system operates by integrating three major units namely current injection unit, sensing unit and microcontroller unit. Those units govern the overall operations of the sensing system. Secondly, the measurements from the developed unit were compared with the measurements of the commercially available device at set conditions. This experimentation evaluated the measurement performance and demonstrated the effectiveness of the developed sensor prototype. Finally, the influence of rebar and the effect of frequency on the electrical measurements were studied through laboratory experimentation on a concrete sample. Experimental results indicated that the electrical resistivity measurements taken at a closer proximity to the rebar had its influence than the measurements taken away from the rebar in the ideal set condition. Also, the increase in electrical resistivity to the increase in frequency was observed, and then the measurements show lesser variations to higher frequency inputs.
History
Editor
Al-Hussein M
Start Page
1290
End Page
1297
Number of Pages
8
Start Date
2019-05-21
Finish Date
2019-09-24
ISSN
2413-5844
ISBN-13
9789526952406
Location
Banff, Canada
Publisher
The International Association for Automation and Robotics in Construction (IAARC)