File(s) not publicly available

Matching SVM kernel's suitability to data characteristics using tree by fuzzy C-means clustering

posted on 06.12.2017, 00:00 authored by A B M Shawkat AliA B M Shawkat Ali, K Smith
Over the last decade kernel based learning algorithms known as Support Vector Machines (SVMs) have become an attractive tool to solve pattern recognition problems. Choosing an appropriate kernel still is a trial and error approach for SVM however. This research provides some insights into the data characteristics that suit particular kernels. Our approach consists of four main stages. First, the performance of six kernels is examined across a collection of 33 classification problems from the machine learning literature. Secondly, a collection of statistics that describe each of the 33 problems in terms of data complexity is collected. After that, fuzzy C-means (FCM) is used to cluster, and construct a decision tree is used to generate the rules of the 33 problems based on these measurea of complexity. Each cluster represents a group of classification problems with similar data characteristics. The performance of each kernel within each cluster and the rules among the tree is then examined in the final stage to provide both quantitative and qualitative insights into which kernels perform best on certain problem types.



Abraham A; ?ppen MK; Franke K

Parent Title

Design and application of hybrid intelligent systems

Start Page


End Page


Number of Pages





IOS Press

Place of Publication

The Netherlands

Open Access


External Author Affiliations

Monash University;

Era Eligible


Number of Chapters


Usage metrics