Freshwater Point Project 1998
Sarina, Queensland

Archaeological Survey and Site Report

Complier:
Stirling Smith
Consulting Archaeologist
April 1998
Contents

Acknowledgments .. 2
Introduction ... 2
Technical Data ... 3
Background History ... 5
Site Description ... 7
Objectives .. 10
Site Survey .. 10
Site #1 – Shell Midden .. 11
Site #2 – Stone Wall .. 17
Site #3 – Fish traps ... 21
Site #4 – Petroglyphs .. 25
Site Interpretation ... 29
Recommendations ... 31
Conclusion ... 33
References ... 41
Bibliography ... 42

Figures

Figure 1 ... 6
Figure 2 ... 8
Figure 3 ... 12
Figure 4 ... 12
Figure 5 ... 14
Figure 6 ... 16
Figure 7 ... 17
Figure 8 ... 19
Figure 9 ... 22
Figure 10 ... 22
Figure 11 ... 26
Figure 12 ... 26
Figure 13 ... 28
Figure 14 ... 28

Appendices

A ... 34
B ... 35
C ... 36
D ... 37
E ... 38
F ... 39
Acknowledgments

This project was supported and funded by the Central Queensland University and the Sarina Shire Council.

Thank you to the staff of Central Queensland University, Queensland Department of Transport – Marine Division, Val Osborne, Merrilyn Amiet and Christina Amiet for their assistance throughout this project. Also, a special thank you to the Birri Gubba Aboriginal Corporation of Traditional Owners for their assistance in providing background and historical information.

Introduction

The aim of this project was to conduct a preliminary site survey of the Freshwater Point area and to produce a report detailing features of archaeological significance.

A site survey was conducted of the entire Freshwater Point region, which included a two-week period of fieldwork.

This report outlines initial findings and information pertaining to the Freshwater Point site from which further work may be drawn.
Technical Data

Date of Inspection: 9-21 March 1998

Personnel: Stirling Smith, BA (Arc), Grad Dip (Mar Arc)
Consulting Archaeologist

Location: Freshwater Point is located approximately 14
kilometres south east of Sarina. Access is via the
Miram Kahn Drive.

GPS Position: The GPS position was acquired with a Magellan
NAV 5000D feeding through Nav Star differential
correction unit. (AUS: Datum)

Site #1: Shell Midden
Latitude: 21° 24' 50" S
Longitude: 149° 18' 14" E

Site #2: Stone Wall
Latitude: 21° 24' 511" S
Longitude: 149° 18' 381" E

Site #3: Fish Traps
Latitude: 21° 24' 57" S
Longitude: 149° 19' 28" E

Site #4: Petroglyphs
Latitude: 21° 25' 182" S
Longitude: 149° 20' 176" E

Corresponding Maps:
\~ Topographic Survey, 1:100, 000
Sheet Number 8755, Series R631
\~ Army Map, Emergency Edition, 1:63, 360
Sheet Number 9, Zone 8
\~ Cadastral Map, Armstrong Beach
TM153

Site Photographs:
\~ Freshwater Point: FW-1 (S. Smith)
Colour 35mm
\~ Freshwater Point: FW-2 (S. Smith)
Black & White 35mm
\~ Freshwater Point: FW- 3 (S. Smith)
Colour Slide 35mm
Freshwater Point: VFW-1 (S. Smith)
VHS-C Colour Video

Oblique Aerial Photographic Series –
Mackay: 8755, 1:25000, Run 12
St. Lawrence–Townsville: 1:12, 000, Run 12
St. Lawrence–Townsville: 1:12, 000, Run 13
Background History

Written history of the Freshwater Point region, south of Sarina is extremely scant. However, the Sarina district has a long recorded history dating back to 1863 when graziers, John & Edward Atherton, accompanied by Henry Bell settled at Plane Creek, today known as Sarina.

The Sarina district has witnessed many historically significant events. In the mid eighteen hundreds, the introduction of sugar cane to the area brought with it the practice of 'Blackbirding', the use of forced Melanesian labour. In 1865, gold was found at Mt Cooper, but its discovery was kept quiet due to the fears of landholders that their properties could be broken up by mining claims. In contrast, Grasstree Beach in 1889 was to become the scene of a full scale gold mining operation by the Zelma Production Company.

Long before the arrival of Europeans, however, Aboriginal people had inhabited the region. Unfortunately, little is known about the indigenous people who resided in this area. There are only limited references to Aboriginal people in early European accounts. What is known, is that “tribes did gather annually on the higher and therefore safer terraces above Plane Creek where the Brooks' farm is now sited. These gatherings were purely social occasions for Corroborees and feasting” (Phillips, 1988:11). Today, the most enduring and visible reminders of the original inhabitants of this area are the shell Middens and fish traps that are scattered along the coast line.

A certain amount of confusion surrounds the origin of the naming of Freshwater Point. It has been widely accepted that Captain James Cook named the Point after passing in the H.M.S Endeavour in 1770 (Figure 1). To the contrary, Cook would have never sighted Freshwater Point as the Endeavour's course would have took the ship well out to sea along this part of the coastline.
In fact, it was Captain Blackwood of the H.M.S Fly in 1843 who gave Freshwater Point its name. Blackwood was charged with the task of exploring and charting the unknown regions of the Queensland coast. As part of this exploration, he conducted a series of coastal mapping surveys from West Hill Island to the northern extent of the Whitsunday Passage (Appendix A). This region encompasses what is today known as Freshwater Point.

On the 13th of March, 1843 a small party of men from the H.M.S Fly landed at Cape Palmerston responsible for working their way northwards recording the coastal features, as well as, the fauna and flora. Meanwhile, Captain Blackwood and the remaining crew of the H.M.S Fly sailed north and found a
safe anchorage to establish camp. Blackwood later named this bay Llewellyn Bay, situated near the present hamlet of Armstrong’s Beach.

Captain Blackwood explored this region in a small boat sailing into what is now known as Sarina Inlet while awaiting the return of the land based survey team. It was during these explorations that Blackwood discovered a good supply of freshwater and thus the area given the name Freshwater Point.

It has been said that ever since this time that Freshwater Point has been known as a reliable source of freshwater and used regularly by mariners sailing past.

Site Description

Freshwater point encompasses an area of approximately 20 hectares featuring a wide variety of native vegetation including mangroves, eucalypt woodland, grasses and gum trees. One of the most notable features of the area is the fascinating rock formations that Freshwater Point is built upon. These formations make a spectacular and colourful backdrop for the white sandy beaches and the lush vegetation that covers the lowlands and the hill tops.

As the name of the area suggests, there is a good supply of fresh water available. At the time of survey, there were two large freshwater ponds with a substantial supply of water. The large quantity of freshwater witnessed was undoubtedly due to the high rainfall experienced by the region prior to fieldwork. Nonetheless, it demonstrates the area’s ability to catch and hold quite substantial amounts of rainwater, as well as being fed from underground sources.

There are two main sources of water at Freshwater Point. The first is a small waterhole located just behind a coastal dune on the northern side of the Point (Appendix B). This waterhole is approximately 5 metres wide and almost 50
metres long. At the time of inspection, the soak was holding a large quantity of freshwater that would indicate that the water hole is a catchment area for run off (Figure 2). This source of freshwater would seem to be semi-permanent and the quantity of water dependent on seasonal variations.

Figure 2. Fresh water source - eastern side of Freshwater Point.

The second water source is situated on the western side of the Point approximately 20 metres behind the beach and is surrounded by swampland and large Gum Trees (Eucalyptus Camaldulensis). This is a much larger and more permanent source of freshwater (Appendix B). It would appear that this source is fed by underground springs. The freshwater has encouraged the luxuriant growth of a large number of freshwater plant species. In fact, the plant cover was so thick that it was hard to define the limits of the waterhole.
The freshwater has also attracted a large number of birds to the region, as well as larger mammals such as wallabies. This source of water would appear to be a permanent supply offering at least a limited reserve close to the surface all year round.

The geological rock formations that constitute this part of the coastline are quite striking. Geologically the region is part of what is referred to as the 'Campwin Beds' (Lees, 1967:1). The Campwin Beds are known to contain precious metals such as gold. Such deposits were recovered from the Zelma mine at nearby Grasstree Beach. The entire region including Freshwater Point was investigated by Witcher (1963) of Consolidated Zinc Riotinto Pty. Ltd and described as being “a large, low grade gold deposit. He concluded that the grade of mineralisation is well below economic values” (Lees, 1967:3).

The formations that make up Freshwater Point consists of mainly pyroclastic rocks such as andesite and rhyolite. These formations are interbedded with other sedimentary rocks, predominantly siltstone. While the ore mineral assemblage that is found in the Campwin Beds is made up of pyrite-chalcopyrite-tennantite of which several examples can be seen in the region. Such formations can be traced back to the Upper Devonian and the Lower Carboniferous ages.

Also notable are the changes that the coastal zone has undergone over time. Beach deposits can be found some distance above the present high tide marks demonstrating the geological changes that have shaped Freshwater Point.
Objectives

1) Conduct archaeological survey of Freshwater Point
2) Access site significance in terms of archaeological features
3) Produce a site plan of the region
4) Record site features with the aid of video and still footage
5) Produce a final report including recommendations for the future use or development of the site

Site Survey

Due to the size of the area examined and the dispersed nature of the various features observed, the site descriptions have been divided into four sections. Each site is discussed separately and numbered between, Site#1 - Site#4. Due to the separation of the archaeological features, co-ordinates are given for each site under the heading of 'Technical Data.'
Site #1 – Shell Midden

"All shell Middens have certain properties in common. Shell comes largely from the hard parts of aquatic fauna (freshwater or marine), and sites containing shell are usually located adjacent to aquatic environments" (Stein, 1992: 1). A series of shell scatters were located at the northwestern edge of Freshwater Point (Appendix B). This area of the site is within a mangrove fringed tidal zone containing a high concentration of calcareous mud. The site is well protected from prevailing southeasterly winds and is situated on the end of a substantial andesite rock spur.

Examination of this area would suggest that there is no evidence that these scatters were affected or created by storm deposition. Furthermore, close analysis of the shell material suggests a specific selection of a consistent size and species of shells. Such selection of specific marine shells would indicate the human selection, transportation and disposal of the shells in the one place over a prolonged period of time.

The scatters consist of three small groups of compacted marine shell material. Two of the scatters are joined together, but both have a distinct centre or mound. Both scatters are approximately 3 metres in circumference with flat and weathered tops. The scatter closest to the creek has a well-defined edge that can be easily identified from the creek bed below. It is from this edge that some of the shells are eroding out of the creek bank (Figure 3).

These Middens are situated adjacent to a small creek that flows from a large marshland out into Sarina Inlet. This creek may have been the original source of some of the shell material that makes up the Midden itself. A small rock path has been placed across the narrowest point of the creek approximately 10 metres south of the Midden (Figure 4). The rock material that makes this crossing is not found in the immediate vicinity. Rather, it is sourced from farther out across the mud flats – a distance of 50 metres or more. This would
Figure 3. Shell Midden

Figure 4. A rock weir situated at the shell Middens Site #1.
indicate that the rock has been purposely placed across the narrows to create a small weir or dam.

The placement of these rocks allows a small pond to form behind the rocks at low tide creating a small fish trap upstream of the shell Midden. It was observed that although there is little left of the weir in its present state, it is still effective in capturing many small species of fish and molluscs. The downstream section below the weir, in contrast, drained water away quickly at low water and left little of sustainable interest.

The third shell scatter is situated approximately 5 metres further north of the two joined scatters. This Midden is of a much larger size measuring approximately 4.5 metres long and 3 metres wide. An earthen mound that has covered some of the shell deposits backs onto this Midden. Although this is the largest of the Middens, the shell material that is visible from the surface has been heavily influenced by natural degradation.

Also noted at the extreme edge of this third Midden was a large quantity of rock and rubble material. Interspersed with this material were several stone cores each displaying distinctive ‘striking platforms’ (Figure 5). The striking platform is “the part of a flint core which is struck to remove a flake or blade” (Champion, 1980:127). This is accomplished by striking the rock or core with a hammerstone. No hammerstones were noted at the site. It is probable that there was limited production of stone tools at this area, making use of the abundant rocks that are available. Such stone tools would have been used for such purposes as breaking open shells and removing oysters from the rocks.

To establish the composition of the Middens a closer examination of the visible remains was required to enable the identification of the number of different shell species. To achieve this a 1 metre by 1 metre Grid Square was placed at an arbitrary point on top of the Midden. The grid square defining the limits of the survey and providing a system of control for the count. The grid square examination revealed that much of the shell material on the surface
was heavily fragmented and, as such, identifying all of the shell materials was not possible.

Figure 5. Stone core demonstrating 'striking platform'.

The results of the identification of shell materials (from largest to smallest quantity) within the confines of the grid square were as follows:

- Geloina coaxans
- Saccostrea cucullata
- Nerita articulata
- Telescopium telescopium
All of the species that were observed in the Midden were found in the immediate vicinity at the time of inspection. This would indicate that the shell material was indeed sourced from the near proximity. As the shell material was plentiful in number, it would have most likely represented a substantial food source.

Several large concretions of Oyster rock were found lying near the Middens of the species Saccostrea cuccullata (Figure 6). These calcareous cores have been removed from the parent rock and transported from the water's edge up onto the bank. Such cores would have originally had a number of oysters growing on them. As oysters are able to live for extended periods of time on cores, they could have been removed individually and eaten at leisure back at the campsite. Once all of the oysters were removed, the cores were most likely thrown away with all the other smaller shells that constitute the bulk of the Midden material. Examples of this were found on all three of the Middens, as well as isolated examples found in the earth mound behind the largest Midden.

The three small Middens at this site are in generally good condition. Overall the shell Middens are well protected and seem to be in no immediate danger from predation or destruction from either human or natural influences.

The site itself shows little signs of human or natural disturbance. Although at the interface between the Midden and the grassy bank that is at the edge of the site there was some evidence of calcareous sand layers eroding out to the bank. It would appear that this is a natural occurrence most likely due to rain run off. The integrity of the Middens themselves does not appear to be under threat.
Figure 6. An example of oyster concretions found in shell middens.
Site #2 – Stone Wall

At the western end of Freshwater Point is a series of rock spurs that lead out into Sarina Inlet. The most westerly of these spurs is the site of several interesting features (Appendix B). The spur itself is comprised of an andesite intrusion that is within the intertidal zone and thus completely covered at high tide. At the end of the spur is a large stone wall that has been constructed from surrounding rock material (Figure 7). It measures 35 metres long and reaches a maximum height of 0.8 metres and a base width of 1 metre.

Figure 7. View of rock wall looking out towards Sarina Inlet.
The wall is in extremely good condition and is well cemented together. Marine growths such as oysters and molluscs were noted to be very few in number when compared to the surrounding rock. This may indicate that the structure is relatively new when compared to other rock formations in the near vicinity. It appears that this wall is a singular stand-alone feature with no other adjoining wall or piers. The wall is situated at the very end of a natural rock formation. It slopes down at an angle of 15° and gradually disappears into the mud at the low water mark. The only other features that could be found nearby are three stakes sticking out of the mud a distance of 30 metres away from the wall. Local fishermen believe that these stakes belong to fish traps that were used as recently as thirty years ago and, therefore, would not have significance to this stone wall.

Also found at the base of this rock wall is a selection of iron pieces in a very poor state of preservation. Several pieces of the ironwork are so badly weathered that their original use is unrecognisable. After further searching, a large piece of iron was discovered that would appear to have originally been a ship's gudgeon (Appendix C). The gudgeon is the device that is attached to the ship's hull and allows the rudder to turn freely. This object, like all the similar iron objects found were in a state of severe iron degradation, however, the basic outline was still discernible. The gudgeon was extensively discoloured with red/black oxyhydroxide (Fe₂O₃·OH) corrosion product indicating that it has been in a highly aerated environment further hastening decay. A closer examination revealed the objects were also covered in a thick black layer of magnetite (Fe₃O₄) indicating the severity of the iron degradation (Figure 8).

Found in the same area as the gudgeon were two small pieces of copper alloy sheathing. Each piece measured 5 centimetres long and almost 3 centimetres wide. The exact origin of this material is unclear. All objects were photographed, recorded and left in situ.
No clear conclusions can be drawn regarding the origin of the stone wall. As the wall is in such overall good condition it is unlikely to be as old as other walls in the area that belong to Aboriginal fish traps. The absence of substantial amounts of marine growths found on the wall would further support this view. Indeed the placement of such a wall would not lend itself to be utilised for such a purpose. Further archival and oral research into this feature may provide some additional insight into its original purpose.

The iron gudgeon and other fittings that were discovered may indicate the presence of the remains of a vessel. Although it is difficult to ascertain an
exact age, the fact that the gudgeon is iron and not bronze would indicate fairly recent technologies.

The copper alloy may provide a key to dating of these artefacts. It is possible that the copper alloy was used as sheeting to protect the hull of a vessel from the ravages of marine borers. If the composition of the alloy is high in copper this would indicate early technologies used prior to 1850. If on the other hand, the alloy is found to have a high content of both copper and tin this would suggest dating after the 1850's. This copper and tin composite, referred to as 'Muntz Metal', was a cheaper alternative to copper alloy that was first introduced in the 1850's and widely used after this date. Analysis of the composition of the material may lead to a more precise dating being achieved.
Site #3 – Fish Traps

Situated in the tidal flats of the western bay at Freshwater Point are a series of rock walls circling out into the bay. Locals to the region have known about these ‘fish traps’ for some time. The bay itself consists of a long sandy beach backed by an extensive system of native vegetation. Tidal fluctuation within this region is in excess of 6 metres. The beach gives way to a large system of tidal flats that slope steadily out towards the low tide mark. The position of the bay on the northern side of Freshwater Point makes it ideally situated to take advantage of the fish stocks that would have been available from Sarina Inlet (Appendix D). Its position protects it from southeasterly winds but it is exposed to the northeasterly wind patterns.

There is an extensive system of stone walls visible at low tide in the bay (Figures 9, 10). The most visible and by far the most intact is a stone wall that leads from the eastern end of the bay out towards Sarina Inlet. This wall is approximately 100 metres long and almost 1 metre at the widest point and reaches a height of almost 0.6 of a metre above the level of the surrounding beach. The best-preserved section of this wall is the uppermost portion that is set high up onto the beach. At this point the wall is in good condition and well cemented together by rock oysters (Saccostrea cuccullata). As the wall meanders out into the bay it starts to steadily deteriorate. Approximately 60 metres along the wall there is a substantial break with fragments of stone wall material strewn out across the mud flats. After this point, the wall slowly circles back into the beach and then disappears into the mud.

Approximately 10 metres further north along the beach is a small remnant of a stone wall that heads out to sea for about 15 metres and then disappears. Adjoining this wall, are a further two walls of similar lengths and diameters that are spread out along the beach. The broken up nature of these walls makes it hard to discern any shape or dimension of the original structure.

The visible outlines of the fish traps are predominantly loop shaped and can be easily seen from the beach at low water. Barely discernible further out
Figure 9. Outline of stone walled fish trap.

Figure 10. Photograph demonstrating extent of wall system.
past the loops appear to be the remains of a system of breakwaters that have all but collapsed. At no point was there any indication of funnels or any arrowhead feature visible, although it is evident that this bay would be affected by seasonal changes that could periodically cover and uncover such structures.

Based on the circumference of the walls to estimate the volume of these fish traps, it soon becomes apparent that this system of traps would have yielded substantial quantities of seafood. Such a resource would have been highly prized and maintained accordingly.

At the northern extreme of the bay some 300 metres west were found a series of three iron poles that stick up out of the mud flats. These are approximately 1 metre above the surface and 10 centimetres in diameter. All three poles are suffering from severe iron degradation that is exhibited by the amount of FeO(OH) corrosion product present. This would indicate that the poles are quite old and have been submerged in a salt-water environment for a prolonged period of time leading to their degraded state.

These poles are the last remnants of a system of fish traps that were used by locals up until 25 years ago. The traps consisted of a series of iron and wooden poles placed in a circle around the bay. Wire mesh was then strung between the poles to form the trap. The fish were then funnelled into a small enclosure where they were recovered (M. Day, personal communication).

This series of fish traps is in generally poor condition although some sections of the rock walls are still highly visible and are well cemented together by natural marine growth. Overall many of the rock walls have collapsed and it is hard to define any structure in many instances. The bay seems to be, in general, silting up when compared to levels on the near by coastal regions. Accordingly, many of the outer edges of the traps are now buried under mud and silt. Although the walls are not in view, such burials can in fact protect such structures from further degradation by entombing them.
Further, the region has over the years suffered damage from cyclonic activity that can destroy such structures. Overall, the traps are visible and demonstrate discernible features that are showing the effects of natural weathering brought about over time. The site does not seem to be under any threat from human influences and for all intents and purposes is stable.
Site #4 – Petroglyphs

At the eastern tip of Freshwater Point is a system of two andesite rock walls that extend out into the bay. Between these two walls is a small sandy bay that forms during low tide. The southern most wall is approximately 270 metres long and follows the coastline in a southerly direction. The northern wall on the other hand juts out in an easterly direction and is approximately 550 metres long and 120 metres across and its widest point (Appendix B).

It is this rock wall that contains the most interesting features. During high tide the wall is completely covered, but at low water the wall stands well out of the water and is easily accessed by walking. There are several features that become apparent when walking out along the wall. There are a number of rocks that seem to have been scored or cut by ropes (Figures 11, 12). These rocks may have been used as ‘Hausas’ or mooring points.

Also discovered on this rock wall were two stone petroglyphs (Figures 13, 14). One is situated at the very tip of the rock wall close to the edge of the low tide mark. This petroglyph is on a rounded granite stone measuring 70 centimetres long and 30 centimetres wide. The figure of a turtle shell can be easily seen. The score of the rock is well defined and the channels are deep and of a consistent size. The position of the rock provides protection from any rough weather or ocean swells. The representation of a turtle in this area would fit with the ecological locality for such species. The small bay at low tide exposes a system of sea grass beds across the bay. Indeed, at the time of fieldwork on two separate occasions, turtles were observed in the bay.

A smaller petroglyph was found much higher up on the rock wall. This figure was represented on similar rock to the first engraving. The figure was 12 centimetres by 10 centimetres with varying depths of markings. The exact representation of the figure is unclear. This rock is much more exposed to weathering and as a result, the petroglyph is lacking the clear definition of the previous example.
Figure 11. Stone demonstrating extent of wear

Figure 12. Pattern left by chain links
A small headland with an area of low scrubland behind it is at the northern tip of the beach. This is the only area in the region that is devoid of large old growth trees (Appendix B). This area seems to have been cleared of large trees in the past allowing the growth of only smaller colonising species of scrub.

Due to extremely high grass that was present at the time of inspection and the thickness of the undergrowth, it was not possible to complete a thorough survey of the area. However, a cursory examination of the area revealed several semi-buried timbers, in a cluster, close to the fore dunes. These timbers were dressed and consistent in size with that of thick timber beams. There were also indications that the timbers featured nail holes and strap marks. Perhaps remains of a dwelling or structure.

Also located in this area were the possible remains of a well head that was sunken down and covered over by vegetation. A 1942 Army map of the region indicated the presence of a well at Freshwater Point (Appendix E).
Figure 13. Stone petroglyph representing a turtle shell.

Figure 14. A small rock engraving.
Site Interpretation

Freshwater Point can best be referred to as a 'multi-use' site. The use of fish traps found in this region, to catch local fish stock is one example that exemplifies this. The permanent supply of freshwater that is supplied by the two water holes and the abundant marine life would have attracted both Aboriginal people and European settlers alike. Initially, Aboriginal people built fish traps constructed out of stone. Later, Europeans constructed fish traps in the same region with modern materials often incorporating the existing stone walls.

Certain archaeological features at Freshwater Point indicate a long association by Aboriginal people with the region. It is probable that Freshwater Point was a food-gathering source due to the large and extensive fish trap systems and shell scatters. Food stocks gathered in the region would have been transported to other near by vicinities. The Sarina district was noted as being a large gathering ground for feasts and Corroborees. "Apparently the Aboriginal men, paddling canoes, proceeded to the beaches and sea. Oysters, crabs, prawns and fish were brought to the terraces in huge quantities for their festivals" (Phillips, 1988:11). Due to the close proximity of Freshwater Point and its apparent abundant food supply it is likely that food gathered for such celebrations would have come from this region.

Also, the two petroglyphs represented on the site are likely to be carvings of important features in the lives of Aboriginal people at the time. Although their exact representation may never be known, the time and energy needed to create such art forms would have been considerable.

The archaeological features noted in the region, such as fish traps, shell Middens and the 'turtle' petroglyph are indications that Aboriginal people spent a considerable time hunting and gathering in this area.

Other archaeological features in the region would indicate early European use of the site. The large rocks on the eastern side of Freshwater Point show
signs of being used as ships hausas or mooring points. Vessels may have used these rocks over a prolonged period of time steadily wearing through and leaving behind a permanent record. It is known that Freshwater Point was an easily accessible point for vessels to recover water. This is one of the few places along the Queensland coast that has a fresh water supply. By examining the wear analysis on these rocks, both rope and chain markings can be seen indicating relatively modern usage (Figures 11, 12).

The timbers and possible remains of a well may indicate the presence of more permanent dwellings at this site. When the area is more accessible, perhaps after a bush fire, an in depth survey of the area may be more practical and yield further important data.
Recommendations

The status of Freshwater Point as a multi-use site is significant enough to guide its future development. The following recommendations outline some of the options:

- Development of a system of Trails to take advantage of the numerous archaeological and natural features of Freshwater Point. Such walks based on heritage or nature themes are already in place and proving extremely popular throughout Australia. Two examples that share similar resources to Freshwater Point are the Conway National Park in the Whitsunday's and Marrdja Botanical Boardwalk at Cape Tribulation.

The Coral Beach Track at Conway National Park in the Whitsunday's (Appendix F) is a self-guided walking tour. At the start of the walk pamphlets are available outlining the different species of vegetation in the region, as well as, describing their traditional uses by Aboriginal people. Also described in detail is the system of stone fish traps and remains of shell Middens along the trail. The Coral Beach trail has proven to be extremely popular and there is no reason why a similar scheme at Freshwater Point would not meet with similar success. Such a walking tour would be easily implemented in the region with only minimal financial outlay required.

The Marrdja Botanical boardwalk at Cape Tribulation is yet another successful example of low impact Eco-tourism. This particular walk is designed to allow people to see and appreciate the rainforest while minimising impact on the native vegetation. Incorporated into the trail is a series of interpretive plaques placed at strategic points of interest along the way. Once again such plaques could be introduced at Freshwater Point but it would require a further financial outlay. The placement of interpretative plaques in places of particular interest such as at the site of the fish traps or shell Middens would be ideally suited.
• That Freshwater Point be highlighted in regional publications such as visitor information sheets and tourist guides.

• That access to the site be regulated in such a way as to optimise public involvement while protecting its botanical and historical features.

• That Central Queensland University continues to monitor the site in terms of its interest for a range of academic disciplines, including history, Aboriginal and Islander studies, botany, cultural studies and tourism.

• That Central Queensland University and schools from Sarina Shire & Districts promote field trips to Freshwater Point in order to educate students on the significance and value of the site.

• Further archaeological investigation of the region. With permission and supervision by the traditional Aboriginal owners, dating techniques could be applied to such features as the system of shell Middens. Also, further research into the district may reveal further cultural heritage significance.

• Introduction of a monitoring system whereby the site is periodically examined to ascertain any changes to the condition of the site. Such schemes are often undertaken by interest groups such as local botanical societies or historical groups.

• That scientific research be conducted to gather data on the deterioration of archaeological remains in order to provide a better understanding of the conservation processes involved with their deterioration.
Conclusion

Regardless of the outcomes of the above recommendations, it is suggested that Freshwater Point be more widely publicised. Further to this, the significance of Freshwater Point in relation to the history of Sarina and district should be highlighted in future publications or displays within the region.

Freshwater Point is a region of cultural significance and natural beauty and as such presents a multi-use site. It is hoped that this project and indeed this report will stimulate further research into this region.
... Captain Blackwood had determined on the erection of a beacon on Raine's Ilet to mark the entrance of a good passage through the reefs. ... By the middle of September the party on Raine's Ilet, ... had completed the beacon. ... It is a circular stone tower, 40 feet high and 30 feet in diameter at the base, where the walls are five feet thick. ... It was roofed at top by a dome-shaped frame of wood, covered by painted canvas. Its summit was thus raised 70 feet above low water mark."

J.B. Jukes: Voyage of HMS Fly vol. ii., p. 255 & 267

Appendix A
Extract from 'The Missing Coast' J.C.H. Gill.
Appendix B

Freshwater Point Site Plan.
Appendix C

Drawing of iron gudgeon observed at site # 2.
Appendix D

Aerial photograph showing extent of Sarina Inlet.
Appendix E

Excerpt from 1942 Army map.
Along with spearing, net fishing and poisoning, fishtraps were also used, and fishtrap remains are still found along Queensland's coasts. Walls of stone were created in intertidal zones, trapping fish as the tides receded.

Water is precious to any society. Aboriginal people's daily lives revolved around access to water. This creek is normally dry, but flows when the wet season arrives. Using large bailer shells or other vessels, Aboriginal people carried and stored water from intermittent creeks such as this one.

The spider lilly (Crinum pendunculata) was useful to Aboriginal people living near the sea. Jellyfish stings were treated using juice from certain parts of this plant. The treatment was especially used for box-jellyfish stings.

You can often see the artifacts of Aboriginal people at or near ideal picnic spots. In a shady spot with a cool ocean breeze, Aboriginal people may have feasted on their coastal harvests. If a spot is used for many generations, a pile of shells will remain, forming a midden.
Take Care
Conway National Park is a protected area. No plant or animal material can be eaten, damaged or removed.

Some plants discussed in this brochure are poisonous and many materials need treatment to remove toxins before they can be safely eaten.

Local indigenous people
This self-guided walk was created with the help of the Giru Dala council of elders, who are the traditional custodians of the Whitsunday homeland area. Uses of plants and animals described in this brochure are not limited to the Whitsunday coast and have occurred over the whole of north Queensland.

Different ecosystems in Conway National Park and the surrounding area have great importance for the Giru Dala people. Traditionally, local indigenous people make seasonal use of the closed vine forests, rainforest, open forest, mangroves and coastal waters.

Coral Beach Track
Coral Beach track is 1km, winding through open forest and vine thicket. Along the track to Coral Beach you will glimpse Shute Harbour and Whitsunday Passage.

Materials needed to hunt in the coastal environment were often found in the forests surrounding the beaches. Black wattle (Acacia leiocalyx) is a strong wood, ideal for fashioning sturdy spears for hunting fish.

Fibre for dilly bags and string can be extracted from the branches of the native rosella (Hibiscus heterophyllus). Buds and flowers of this tree, also known as the native hibiscus, are edible.

When agitated in water, the branches of the foam bark tree (Jagera pseudorhus) produce large amounts of foam. This foam is saponin, a poison that deoxygenates the water, causing fish to die and float to the surface. Aboriginal people often used this method to catch fish.

Aboriginal people bury the fruits of Burdekin plums (Pleiozynium timorense) in sand to speed their ripening. Trees bearing this popular fruit can be found growing in large groves. The bark is an excellent saltwater-fish poison, used in lagoons and creeks.

Not only were pandanas (Pandanus spiralis) leaves woven into baskets for cooking and storage of food, but the orange segments of the large seeds provide dye that can be used to colour basket fibres.

The flowering and fruiting of the cocky apple (Planchonia careya) during the wet season signifies the best season to catch particular marine foods. Cocky apple timber was used to make clap sticks, while bark was used to treat sore eyes.
References

Lees, RE, 1967, *Geology of the Grasstree Area, Sarina District Queensland*
Department of Geology and Mineralogy, University of Queensland.

Bibliography

Johnson, D.P., *Guide to the Permian to Quaternary Geology of Mackay-Collinsville-Townsville Region*.

Macpherson, N., *Historical Review of the Shire of Sarina Queensland*.

Toghill, J., *Ghost ports of Australia*.