Studies on Dieback of Buffel Grass (*Cenchrus ciliaris*) in Central Queensland

A thesis by:

Sandrine Makiela
B.App.Sci. (Biol), B.Sci.Biol. (Hons)

Doctor of Philosophy

Central Queensland University
Faculty of Sciences, Engineering and Health
School of Biological and Environmental Sciences

March 2008
Abstract

Buffel grass (*Cenchrus ciliaris*) is an introduced, summer growing, perennial tufted tussock grass which is used extensively in improved pastures in the grazing industry. Since 1993 there has been an increasing level of dieback in buffel grass in districts of Central Queensland districts, involving red leaf symptoms and occurring in roughly circular patches. There is a potential for this condition to destroy large areas, ultimately resulting in loss of production for beef, dairy and sheep farmers who use this grass in improved pastures.

This is the first multifaceted study of buffel grass dieback (BGD). Areas showing signs of dieback have previously been the subject of extensive testing for soil fertility factors, soil chemistry, nematodes and phytoplasmas, with few conclusive results. Therefore, one of the aims of this project was to find the cause of buffel grass dieback. Specific objectives included describing the plant and field symptoms, determining factors responsible for plant death, and determining the method of spread.

A complete description of the symptoms was made at plant, patch and paddock levels. Symptoms of Buffel Grass Dieback (BGD) presented as a reddening of the leaves starting from the tip and progressively moving towards the ligule. The red symptoms range from bright red, to dark red, to bronze (RHSPCC red group 45: A, B; 46: A, B; greyed-orange group 166: A; 177; A) (The Royal Horticultural Society, 2001). Symptoms first appeared on the tips of the older leaves and progressively moved down the leaf. The next oldest leaf then showed symptoms, and so on, with the youngest leaf showing symptoms last. Any tillers followed the same pattern, regardless of whether symptoms on the primary shoot had progressed past the point at which the tiller was produced. The amount of time from new growth to the appearance of the red symptoms seemed to be directly proportional to the amount of rainfall. That is, the more rain, the longer it took for symptoms to develop. The amount of subsequent rainfall seemed to influence the time it took for plants to succumb to the condition. That is, when there was adequate water and lush growth plants grew faster than the spread of the condition. When plants became water stressed, the condition overtook growth and the plants succumbed.
Symptomatic leaves did not always have a clear red-green boundary. Occasionally, BGD symptoms progressed faster down one half of the leaf. Red symptoms were invariably more vivid on the adaxial surface of the leaves than on the abaxial surface. Roots of affected plants appeared stunted compared to roots of unaffected plants. Roots of affected plants often displayed soft, darker, ovoid sunken regions, which were possibly lesions.

The BGD condition appeared to become dormant as buffel grass became dormant. That is, if the dieback condition killed the plant before the onset of dormancy, no new shoots were produced subsequent to a rainfall event. However, if dormancy occurred before the plant succumbed to the condition, new shoots were produced after rain, and the cycle repeated with symptoms first appearing in the oldest leaf.

Patches were roughly circular and ranged from 2 m diameter to over 60 m diameter. Adjacent patches often coalesced and further enlarged. Symptoms first appeared on the periphery of an existing patch, where during the last cycle the plants had become dormant before succumbing to the condition. Symptoms progressively moved outwards from the periphery of the patch, at a rate of approximately 5 cm per week. Patch spread was irregular and did not correspond with soil compaction or land slope, though the condition may spread more rapidly downhill due to runoff.

BGD affected plants weighed approximately two thirds that of unaffected plants. They were noticeably shorter and had shorter leaves and internodes, with the difference in height attributed to internodes rather than leaf length. BGD affected plants also had fewer tillers than unaffected plants of the same age. Although the numbers of leaves per tiller were the same as unaffected plants, the overall result was a decreased amount of foliage available for grazing, thereby decreasing productivity of livestock. In fact, the loss of productivity was twofold, since cattle had been observed to selectively graze unaffected plants.

BGD affected plants had fewer seed heads, shorter seed fascicles, and a higher proportion of non-viable embryos compared to unaffected plants. Therefore, not only did BGD affected plants succumb and die, but there were fewer seedlings to replace them. This could have detrimental consequences for the sustainability of an improved pasture.
At the cellular level, there was no discernable difference in cell size between BGD affected plants and unaffected plants in either roots or leaves. However, the roots of BGD affected plants were more damaged at the cellular level, with the cortex mostly sloughed off and the mesophyll cells disrupted.

The bulliform and mesophyll cells of BGD affected leaves were more irregular in shape. The bundle sheath cells of BGD affected leaves appeared disrupted, with chloroplasts not in their usual alignment. There also seemed to be a breakdown of chloroplasts.

The leaf pigment data concurred with the premise of a breakdown of chloroplasts. Red symptomatic leaves had lower concentrations of chlorophylls \(a \) and \(b \) compared to green leaves on the same plant. Red symptomatic leaves also had higher concentrations of anthocyanins and carotenoids. It appears that, in red symptomatic leaves, chlorophylls were being destroyed and anthocyanins were being excessively produced.

There was no discernible difference in the phloem vessels of BGD affected and unaffected plants, both in the roots and the leaves. However, the xylem of both roots and leaves was partially occluded by structures tentatively identified as tyloses. These structures could also have been local accumulations of phenols or polyphenols, or in some cases the remnants of partially decomposed cells. These occlusions seemed more severe in the roots than in the leaves. Possible inclusion bodies were also found in the mesophyll cells of BGD affected leaves. Inclusion bodies are usually a sign of pathogen infection. However, there were no pathogens detected in the histology work.

Chemical analyses were made of BGD affected plants, as well as of the soil in which they were growing, concluding that both plants and soil in the BGD affected paddock surveyed were deficient in nitrogen, phosphorus, sulfur and zinc.

A survey was made of other plant species present in the vicinity of the dieback condition, with particular attention given to those species which have reported allelopathic effects. In addition, a study was made on other plant species which also appear to be affected by the dieback condition. Microbial isolations were regularly made from both plant and soil material. The isolates obtained were tested for proof of pathogenicity using Koch’s Postulates, but none proved to be the causal agent of BGD.
The mode of transmission of the condition was studied, and BGD was found to be soilborne. Whether root contact is necessary for successful transmission was not established.

Possible methods of controlling the condition were investigated. While none of the treatments successfully controlled the condition, one of the treatments investigated, Amistar (a systemic fungicide), greatly reduced symptom severity.

Although the cause of BGD was not found, several important discoveries were made concerning its effect and spread, and many possible causes of the condition were eliminated. It is likely that BGD is caused by a disease complex, with potential pathogens including soilborne fungi and/or viruses. Several abiotic factors such as water and nutritional stress may be contributing causal agents, weakening the plants and making them more susceptible to a pathogen.

More work is needed to conclusively identify the primary causal agent of this potentially costly condition.
Table of Contents

Abstract ... i
Table of Contents .. v
List of Tables .. viii
List of Figures ... xi
Publications Arising From the Thesis .. xv
Acknowledgments ... xvi
Declaration .. xvii
Table of Abbreviations .. xviii

Chapter 1 - Introduction .. 1
 1.1 Purpose of Research ... 1
 1.2 Literature Review ... 1
 1.3 Outline of Research ... 19

Section 1 - Description of Buffel Grass Dieback .. 25

Chapter 2 - Observations and Characterisation of the Dieback Condition 26
 2.1 Introduction ... 26
 2.2 Interviews / Discussions With Primary Producers ... 27
 2.3 Field Observations of BGD Symptoms and Symptom Progression 32
 2.4 Observation of Field Plants in Controlled Conditions ... 62
 2.5 Other Plant Species Potentially Affected ... 64
 2.6 Concluding Statements ... 71

Chapter 3 - Patch Dynamics and Factors Responsible for Patch Spread 72
 3.1 Introduction .. 72
 3.2 Screening of an Affected Paddock .. 73
 3.3 Individual Patch Spread – Pilot Study ... 76
 3.4 Spread of Individual Patches ... 79
 3.5 Concluding Statements ... 86

Section 2 - Effects of Buffel Grass Dieback ... 87

Chapter 4 - Effects of BGD on Plant Morphology and Seeds .. 88
 4.1 Introduction .. 88
 4.2 Morphological Differences Between Unaffected and BGD Affected Buffel Grass. 88
4.3 Germination of Seeds From Various Sources ... 94
4.4 Morphology, Emergence After Treatment, and Viability of Seeds From Various Sources ... 98
4.5 Concluding Statements ... 109

Chapter 5 - Leaf Vasculature and Leaf Pigments ... 110
5.1 Introduction ... 110
5.2 Damaged Leaves and Leaf Vasculature .. 111
5.3 Preliminary Attempts to Study Red Foliar Pigments .. 114
5.4 Foliar Pigments ... 116
5.5 Concluding Statements ... 125

Chapter 6 - Histological Studies ... 126
6.1 Introduction ... 126
6.2 Materials and Methods .. 127
6.3 Results ... 131
6.4 Discussion ... 138
6.5 Concluding Statements ... 142

Section 3 - Causes of Buffel Grass Dieback ... 143

Chapter 7 - Nutrient Deficiencies in Buffel Grass .. 144
7.1 Introduction ... 144
7.2 Materials and Methods .. 145
7.3 Results ... 152
7.4 Discussion ... 179
7.5 Concluding Statements ... 188

Chapter 8 - Investigations into Chemical Causes of BGD .. 189
8.1 Introduction ... 189
8.2 Soil pH and Salinity Pilot Study ... 190
8.3 Soil pH and Salinity – Incremental Radial Measurements 192
8.4 Soil Chemical Analyses .. 196
8.5 Plant Chemical Analyses ... 204
8.6 Concluding Statements ... 211

Chapter 9 - Investigations Into Biological Causes of BGD 212
List of Tables

Table 1 – Primary producer information common to both properties regarding buffel grass (Cenchrus ciliaris) dieback...28
Table 2 - Primary producer information from Property 1 regarding buffel grass (Cenchrus ciliaris) dieback...29
Table 3 - Primary producer information from Property 2 regarding buffel grass (Cenchrus ciliaris) dieback...29
Table 4 – Codes representing different plant symptom types of buffel grass (Cenchrus ciliaris) according to previous history with buffel grass dieback.........................36
Table 5 – Codes representing symptom severity of buffel grass (Cenchrus ciliaris) affected with buffel grass dieback...37
Table 6 – Field trip observations of buffel grass (Cenchrus ciliaris) dieback............................39
Table 7 - Presence and condition of Urochloa mosambicensis growing within patches of BGD affected buffel grass (Cenchrus ciliaris)...66
Table 8 - Radial spread measurements of a patch of buffel grass (Cenchrus ciliaris) affected with the dieback condition...77
Table 9 – Mean difference in radial spread after 42 weeks of patches of buffel grass (Cenchrus ciliaris) affected with the dieback condition..............................81
Table 10 – Mean depth of penetrometer penetration from the periphery of patches of buffel grass (Cenchrus ciliaris) affected with the dieback condition...............83
Table 11 – Comparison of directions of maximum and minimum radial spread, slope and soil compaction of patches of buffel grass (Cenchrus ciliaris) affected with the dieback condition...83
Table 12 - Comparison of morphological attributes of unaffected buffel grass plants (Cenchrus ciliaris) and buffel grass plants affected by buffel grass dieback..............91
Table 13 - Percent emergence of buffel grass (Cenchrus ciliaris) seeds from various sources...97
Table 14 - Counts of buffel grass (Cenchrus ciliaris) seeds from various sources with differing numbers of caryopses...106
Table 15 - Counts of varying colours of embryos of buffel grass (Cenchrus ciliaris) seeds following the TTC viability treatment..107
Table 16 - Frequency of colour symptoms of manually damaged leaves of both unaffected and BGD affected buffel grass (*Cenchrus ciliaris*)…………………………………………………………..112

Table 17 - Treatment descriptions and codes for a nutrient omission trial on buffel grass (*Cenchrus ciliaris*)………………………………………………………………………..148

Table 18 - Foliar symptoms of nutrient deficiency in buffel grass (*Cenchrus ciliaris*)...153

Table 19 - Number of caryopses in seeds of buffel grass (*Cenchrus ciliaris*) grown with various nutrient deficiencies……………………………………………………………...178

Table 20 – Mean pH of soils from BGD affected patches and a BGD unaffected paddock……………………………………………………………………………………………...191

Table 21 – Mean salinity of soils from BGD affected patches and a BGD unaffected paddock…………………………………………………………………………………………...191

Table 22 – Mean pH of soil samples with increasing distance from the centre of a patch of buffel grass (*Cenchrus ciliaris*) affected with buffel grass dieback, and with increasing depth at each distance …………………………………………………………………….195

Table 23 - Mean salinity (ppm) of soil samples with increasing distance from the centre of a patch of buffel grass (*Cenchrus ciliaris*) affected with buffel grass dieback, and with increasing depth at each distance…………………………………………………………195

Table 24 – The effect of profile depth and distance from a BGD affected patch of buffel grass (*Cenchrus ciliaris*) on the concentration of plant available nutrients (mg/kg soil) in the soil (down to 1 m depth)…………………………………………………………………………...200

Table 25 - The effect of profile depth and distance from a BGD affected patch of buffel grass (*Cenchrus ciliaris*) on the concentration of plant available nutrients (mg/kg soil) in the soil (down to 60 cm depth)………………………………………………………………..201

Table 26 - The effect of distance from a BGD affected patch on the concentration of nutrients in buffel grass (*Cenchrus ciliaris*) plants……………………………………………………………...206

Table 27 – Herbaceous plant species found in BGD affected patches and paddocks, and unaffected paddocks of buffel grass (*Cenchrus ciliaris*)……………………………………...215

Table 28 – Grass species found in BGD affected patches and paddocks, and unaffected paddocks of buffel grass (*Cenchrus ciliaris*) …………………………………………….216

Table 29 – Microorganisms isolated from various plant parts of BGD affected buffel grass (*Cenchrus ciliaris*)…………………………………………………………………..221
Table 30 – Microorganisms isolated from various plant parts of symptomatic *Urochloa mosambicensis*……….222

Table 31 – Microorganisms isolated from soil from the root zone of BGD affected buffel grass (*Cenchrus ciliaris*)……222

Table 32 - Number of BGD affected buffel grass (*Cenchrus ciliaris*) plants in each category after growing in various soil types………………………………………………………………………………….236

Table 33 – Observations on BGD affected buffel grass (*Cenchrus ciliaris*) with the first set of treatments after the first fortnight…………………………………………………………………………………………………...259

Table 34 – Observations on BGD affected buffel grass (*Cenchrus ciliaris*) with the first set of treatments after the third fortnight ……………………………………………………………………………259

Table 35 – Observations on BGD affected buffel grass (*Cenchrus ciliaris*) with the first set of treatments after the fourth fortnight………………………………………………………………………………259

Table 36 – Observations on BGD affected buffel grass (*Cenchrus ciliaris*) with the first set of treatments after the fifth fortnight………………………………………………………………………………260

Table 37 – Observations on BGD affected buffel grass (*Cenchrus ciliaris*) with the second set of treatments after the first fortnight…………………………………………………………………………………………….260

Table 38 – Observations on BGD affected buffel grass (*Cenchrus ciliaris*) with the second set of treatments after the third fortnight……………………………………………………………………………………260

Table 39 – Observations on BGD affected buffel grass (*Cenchrus ciliaris*) with the second set of treatments after the fifth fortnight………………………………………………………………………………261

Table 40 – Amounts of each chemical, at three different treatment concentrations, applied to dieback affected buffel grass (*Cenchrus ciliaris*) plants…………………………………………………………….265
List of Figures

Figure 1 – Estimated areas with buffel grass (*Cenchrus ciliaris*) pastures across northern Australia (shaded areas). Areas with the dieback condition (as reported by Graham and Conway, 1998) are highlighted red in the inset...5

Figure 2 – Flow chart of possible causes of buffel grass (*Cenchrus ciliaris*) dieback……20

Figure 3 – Thesis schematic displaying areas of research studied.......................................21

Figure 4 – Comparative schematic of monthly rainfall and severity of buffel grass dieback symptoms..43

Figure 5 – Red symptoms of buffel grass (*Cenchrus ciliaris*) dieback.................................44

Figure 6 – Seed heads from buffel grass (*Cenchrus ciliaris*) unaffected with dieback (top) and affected with dieback (bottom)..45

Figure 7 – Time lines showing severity of buffel grass (*Cenchrus ciliaris*) dieback symptoms with various amounts of rainfall...46

Figure 8 – Buffel grass (*Cenchrus ciliaris*) dieback symptoms showing mottling (left) and uneven spread of symptoms down the leaf (right)...47

Figure 9 – Necrotic lesions found on both dieback affected and unaffected buffel grass (*Cenchrus ciliaris*) leaves (left), and the black structures found in the lesions...............48

Figure 10 – Roots of unaffected (left) and dieback affected (right) buffel grass (*Cenchrus ciliaris*) plants ...48

Figure 11 – Necrotic areas (left) and lesion (right) of roots of buffel grass (*Cenchrus ciliaris*) affected with buffel grass dieback..49

Figure 12 – Apparently healthy Biloela (cv.) buffel grass (*Cenchrus ciliaris*) growing within a dieback affected patch of American (cv.) buffel grass (white tags show patch boundary)...50

Figure 13 – Large area of coalesced patches of buffel grass (*Cenchrus ciliaris*) dieback...51

Figure 14 – Buffel grass (*Cenchrus ciliaris*) dieback patches along a cattle trail..............52

Figure 15 – Symptoms of *Urochloa mosambicensis* (left) growing in a patch of dieback affected buffel grass (*Cenchrus ciliaris*) (right)...67

Figure 16 – Lesions on leaf of *Urochloa mosambicensis* growing in a patch of dieback affected buffel grass (*Cenchrus ciliaris*)...67
Figure 17 – More severe symptoms of *Urochloa mosambicensis* growing in a patch of dieback affected buffel grass (*Cenchrus ciliaris*)……………………………………………………68

Figure 18 – Symptomatic patch of *Urochloa mosambicensis* growing along a vehicle trail (bottom left)……………………………………………………………………………………………………..69

Figure 19 – Roots of asymptomatic (left) and symptomatic (right) *Urochloa mosambicensis*………………………………………………………………………………………………69

Figure 20 - Grid map of a predominantly buffel grass (*Cenchrus ciliaris*) paddock severely affected with the dieback condition……..74

Figure 21 – Diagrammatic representation showing terminology used to describe a patch of buffel grass (*Cenchrus ciliaris*) affected with the dieback condition…………………………………………..76

Figure 22 – Radial spread of patches of buffel grass (*Cenchrus ciliaris*) affected with the dieback condition……82

Figure 23 - Diagrammatic representation of the parts of the buffel grass (*Cenchrus ciliaris*) plants which were measured……90

Figure 24 – Representative photographs of non-viable (top) and viable (bottom) seed embryos of buffel grass (*Cenchrus ciliaris*) tested by the TCC test……………………………………………………………………………….103

Figure 25 - Mean number of buffel grass (*Cenchrus ciliaris*) seeds per head from plants from various sources (± SE)……
Figure 32 – Cleared leaves of BGD affected buffel grass (*Cenchrus ciliaris*) showing large numbers of spores (left) and a germinated spore (right)………………………………….132

Figure 33 – Cleared roots of BGD affected buffel grass (*Cenchrus ciliaris*) showing hyphal mass and spores (left) and a hyphal mass on the root surface (right)………………………………….132

Figure 34 – Transverse section of a healthy leaf of buffel grass (*Cenchrus ciliaris*)…….133

Figure 35 - Transverse section of a healthy leaf of buffel grass (*Cenchrus ciliaris*) showing minor vascular bundle and bulliform cells………………………………………………..134

Figure 36 - Transverse section of a BGD affected leaf of buffel grass (*Cenchrus ciliaris*) showing the disruption to the bundle sheath and mesophyll cells…………………………..135

Figure 37 - Transverse section of a BGD affected leaf of buffel grass (*Cenchrus ciliaris*) showing tyloses in the xylem vessels……………………………………………………..135

Figure 38 - Transverse section of a BGD affected leaf of buffel grass (*Cenchrus ciliaris*) showing inclusion bodies and irregularly shaped cells……………………………….136

Figure 39 - Transverse section of a healthy root of buffel grass (*Cenchrus ciliaris*)……137

Figure 40 - Transverse section of a BGD affected root of buffel grass (*Cenchrus ciliaris*) showing cellular damage and xylem occlusions. The cortex was missing, as was typical of these root sections…………………………………………………………………..137

Figure 41 - Experimental set up of a treatment unit in a hydroponics trial of buffel grass (*Cenchrus ciliaris*)……………………………………………………………………….150

Figure 42 - Average shoot fresh weight and dry weight of buffel grass (*Cenchrus ciliaris*) with various nutrient deficiencies (± SE)………………………………………………….162

Figure 43 - Average root fresh weight and dry weight of buffel grass (*Cenchrus ciliaris*) with various nutrient deficiencies……………………………………………………163

Figure 44 - Average percent dry matter of buffel grass (*Cenchrus ciliaris*) grown with various nutrient deficiencies (± SE)…………………………………………………….164

Figure 45 - Average plant height of buffel grass (*Cenchrus ciliaris*) grown with various nutrient deficiencies – similar treatments (± SE)……………………………………….165

Figure 46 - Average plant height of buffel grass (*Cenchrus ciliaris*) grown with various nutrient deficiencies – dissimilar treatments (± SE)………………………………………..166

Figure 47 - Average length of longest leaf of buffel grass (*Cenchrus ciliaris*) grown with various nutrient deficiencies – similar treatments (± SE)……………………………………167
Figure 48 - Average length of longest leaf of buffel grass (*Cenchrus ciliaris*) grown with various nutrient deficiencies – dissimilar treatments (± SE).……………………………………167

Figure 49 - Average length of longest internode of buffel grass (*Cenchrus ciliaris*) grown with various nutrient deficiencies – similar treatments (± SE)………………………………………168

Figure 50 - Average length of longest internode of buffel grass (*Cenchrus ciliaris*) grown with various nutrient deficiencies – dissimilar treatments (± SE)………………………………………169

Figure 51 - Average number of non-senescent leaves per tiller of buffel grass (*Cenchrus ciliaris*) grown with various nutrient deficiencies – similar treatments (± SE)……………………………………170

Figure 52 - Average number of non-senescent leaves per tiller of buffel grass (*Cenchrus ciliaris*) grown with various nutrient deficiencies – dissimilar treatments (± SE)……………………………………171

Figure 53 - Average number of tillers per plant of buffel grass (*Cenchrus ciliaris*) grown with various nutrient deficiencies (± SE)…………………………………………………172

Figure 54 - Average number of non-senescent leaves per plant of buffel grass (*Cenchrus ciliaris*) grown with various nutrient deficiencies (± SE)…………………………………………………172

Figure 55 - Seed heads produced per plant of buffel grass (*Cenchrus ciliaris*) grown with various nutrient deficiencies (± SE)……………………………………………………………173

Figure 56 - Number of seeds per head of buffel grass (*Cenchrus ciliaris*) grown with various nutrient deficiencies (± SE)……………………………………………………………174

Figure 57 - Length of seed head of buffel grass (*Cenchrus ciliaris*) grown with various nutrient deficiencies (± SE)……………………………………………………………175

Figure 58 - Length of seed fascicle of buffel grass (*Cenchrus ciliaris*) grown with various nutrient deficiencies (± SE)……………………………………………………………176

Figure 59 - Percent emergence of seeds from buffel grass (*Cenchrus ciliaris*) grown with various nutrient deficiencies……………………………………………………………177

Figure 60 – Apparatus for filtering soil/extractant mixture to 0.2 μm……………………………………199

Figure 61 - Individual experimental buffel grass (*Cenchrus ciliaris*) plant showing plastic sleeve to prevent plant-to-plant contact and maintain humidity………………………………………228

Figure 62 - Photograph of the PVC implement used for obtaining intact soil cores …….238

Figure 63 - Diagram of the field set up of a soil transmission experiment on dieback of buffel grass (*Cenchrus ciliaris*)………………………………………………………………………247
Figure 64 – Mean number of transplanted buffel grass (*Cenchrus ciliaris*) plants with BGD symptoms or foliar lesions, in both the presence and absence of a soil barrier (± SE)……249

Figure 65 – ‘Pot’ for root barrier studies made of nylon root mesh and Termimesh© ……252

Figure 66 - Representative diagram showing treatment sectors and buffer zones in a BGD affected patch of buffel grass (*Cenchrus ciliaris*).………………………………………..256

Publications Arising From the Thesis

I would like to thank my supervisors, Associate Professor Keith Harrower and Dr Gavin Graham, for patiently guiding me through the project. Also, Professors David Midmore and Kerry Walsh for their valued advice, and the technicians: Charmain, Tanya, Rob, Barry, Paul and Graeme, for their assistance with methods and equipment.

I need to thank my sponsors, Meat & Livestock Australia, for funding this project. The assistance of the QDPI is greatly appreciated in lending me equipment. I also thank Maurie Conway and Peter Agius of QDPI for their help with field work.

I am very grateful to the primary producers who gave me free access to their properties. I also wish to thank them for lending me equipment and assisting me in every way.

Thank you to David Reid, QDPI, for statistical support. Last but certainly not least, thanks to all the volunteers who helped in this project: Noel Sammon, Elen Klop, Hannah Abbott, Wendy Dockerty, Helen Morison, Pamela Malyzec and Anthony Parr. Without these people much of my work would not have been possible.

Special thanks to my family and friends.
Declaration

I declare that the main text of this thesis, unless otherwise stated, is my own work and has not been submitted in any other form at any University or institution. Information derived from other sources has been acknowledged in the text and a list of references is given.

Name: Sandrine Makiela

Signed:

Date:
Table of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS</td>
<td>Australian Standards</td>
</tr>
<tr>
<td>BGD</td>
<td>Buffel Grass Dieback</td>
</tr>
<tr>
<td>CEC</td>
<td>Cation Exchange Capacity</td>
</tr>
<tr>
<td>CQ</td>
<td>Central Queensland</td>
</tr>
<tr>
<td>CQU</td>
<td>Central Queensland University</td>
</tr>
<tr>
<td>CSBP</td>
<td>Cumming Smith British Petroleum (company)</td>
</tr>
<tr>
<td>cv.</td>
<td>Cultivar</td>
</tr>
<tr>
<td>DPX</td>
<td>Dibutyl phthalate, Polystyrene resin, Xylene</td>
</tr>
<tr>
<td>EC</td>
<td>Electrical Conductivity</td>
</tr>
<tr>
<td>ESP</td>
<td>Exchangeable Sodium Percentage</td>
</tr>
<tr>
<td>GLM</td>
<td>Generalised Linear Model</td>
</tr>
<tr>
<td>ICP</td>
<td>Inductively Coupled Plasma (Spectrophotometer)</td>
</tr>
<tr>
<td>ICP-AES</td>
<td>Inductively Coupled Plasma Atomic Emission Spectroscopy</td>
</tr>
<tr>
<td>ISTA</td>
<td>International Seed Testing Association</td>
</tr>
<tr>
<td>LSD</td>
<td>Least Significant Difference</td>
</tr>
<tr>
<td>RHS</td>
<td>Royal Horticultural Society</td>
</tr>
<tr>
<td>RHSPCC</td>
<td>Royal Horticultural Society Plant Colour Chart</td>
</tr>
<tr>
<td>SE</td>
<td>Standard Error (of the mean)</td>
</tr>
<tr>
<td>s.e.d.</td>
<td>Standard Error of Difference</td>
</tr>
<tr>
<td>TTC</td>
<td>1,3,5 triphenyl tetrazolium chloride</td>
</tr>
</tbody>
</table>