Abstract: Understanding how we take in, process and present information as part of the learning process, provides clues on how specific teaching methods can be utilised to maximize learning. The literature suggests that a mismatch between learning styles or preferences and teaching styles and approaches may present a barrier to learning and contribute to attrition. This paper presents some early findings of an ALTC Associate Fellowship program, involving three universities, which uses a case study approach to explore the interactions between students' learning styles on the one hand, and lecturers' teaching styles, goals and philosophies, on the other. The paper also initiates discussions on how teaching approaches may be tailored to address the diversity of students' learning styles over the duration of the engineering program, to enhance their learning experience and outcomes.

Introduction

One of the major challenges currently facing Australia is the skill shortage in engineers (Engineers Australia, 2006). In a media release ahead of the Australian Technology Network of Universities conference, held in Perth earlier this year, the Chief Executive of Engineers Australia (Taylor, 2008) warned that there is an estimated shortfall of more than 20,000 professional engineers to meet current demand in Australia.

The final report on the ALTC funded project sponsored by the Australian Council of Engineering Deans, ACED, points out that there is increasing and widespread concern that the current high demand for engineering graduates is not being met by corresponding increases in student demand for engineering education programs (King, 2008). Considering retention rates of engineering students and based on data obtained from the Department of Education, Employment and Workplace Relations (DEEWR) via Engineers Australia, the report indicates that, the likelihood of successful graduation from a bachelor level engineering program is about 52% for male Australian engineering students, and 60% for female students, on average.

Therefore, while there is increased demand for engineers, it is not being matched by an increase in the demand for engineering programs. At the same time, of the small numbers entering engineering programs, only a shockingly low percentage actually graduate. This means that, more than ever before, maximising retention rates of students in engineering programs is of critical importance.
To support and facilitate student success rates and engender active learning, there is a need to have a commitment to identify and respond to weaknesses in teaching, as well as student understanding, within a cohesive and comprehensive program.

To retain students and evaluate the success or otherwise of their programs, universities routinely conduct surveys and collect data. However, it is vital to have sophisticated program evaluations that are well documented with thorough analysis of the data they provide. It has been observed that in data collected via the Course Experience Questionnaire (CEQ), students may rate all aspects of teaching as being of high quality, yet they score the whole course/program's experience as being poor. Such a dichotomy highlights the need to have a closer look at survey questions, other feedback and data collection mechanisms to gain insights into factors affecting engineering students' perceptions of quality teaching and to discover the reasons that contribute to their success. There is a need to share research results in order to assist in engendering a productive discussion on the matter.

This paper presents an overview and some results of an ALTC Fellowship program being undertaken to bridge the gap between students and academic staff in engineering. The program aims at enhancing the learning experience and learning outcomes of engineering students, and embedding enabling strategies and processes for engaging engineering students and staff, systematically. It focuses on exploring synergies between learning and teaching. The paper reports on a case study approach for investigating the interactions between the learning styles of students on the one hand; and the teaching styles of academics, their teaching practices, and their teaching philosophies, on the other.

Learning and teaching styles

Research shows that students are characterized by significantly different learning styles: they preferentially focus on different types of information, tend to operate on perceived information in different ways, and achieve understanding at different rates. The work of Felder and Silverman (Felder and Silverman, 1988) on learning and teaching styles in that discipline is a relevant example of the value-adding the discipline based approach continues to deliver for engineering. Students whose learning styles are compatible with the teaching style of a staff member tend to retain information longer, apply it more effectively, and have more positive post-course attitudes toward the subject than do their counterparts who experience learning/teaching style mismatches (Felder, 1993).

In a recent study of the various learning styles Coffield et al (2004), questioned the validity and reliability of the learning styles construct and assessment instruments. However, in discussing the implications for pedagogy, they state that: “A knowledge of learning styles can be used to increase the self-awareness of students and tutors about their strengths and weaknesses as learners. In other words, all the advantages claimed for meta-cognition (ie being aware of one’s own thoughts and learning processes) can be gained by encouraging all learners to become knowledgeable about their own learning and that of others.”

Coffield et al (2004) refer to Apter’s work (2001) who suggests that an understanding of the various factors that affect or result in different motivational levels, given the possibly different contexts, can ‘allow people to become more in control’ of their own motivation and of their learning, as a result. Coffield et al relate that Apter continues to state that; “Learners can become more effective as learners if they are made aware of the important qualities which they and other learners possess. Such knowledge is likely to improve their self-confidence, to give them more control over their learning, and to prevent them attributing learning difficulties to their own inadequacies.” Through the case studies, this program provided an opportunity for participating students and lecturers to engage in meaningful discussions about learning and teaching styles.

When Grasha (1994) started his investigation into teaching styles, he made the assumption that a teaching style represented a pattern of needs, beliefs, and behaviours that lecturers demonstrated in their classroom. He also envisaged that style was multidimensional and affected how lecturers presented information, interacted with students, managed classroom tasks, supervised coursework, introduced students to the study area or profession, and mentored students.
The interaction between the students learning styles, lecturers' learning styles, teaching styles and philosophies provide a rich field for investigation and holds a great potential for enhancing students’ learning environment and outcomes.

The case studies

The case studies have a primary focus on the learners (students) the teachers (lecturers) and the learning environment (institution). They are designed to explore the proposition that a mismatch between learning styles, teaching styles and institutional norms may impede student commitment and success in learning. By institutional norms we mean such factors as the prestige attached to research, the dominant model of delivery whether it be lecture, online, project etc., and the amount of support offered to students in adjusting to university culture.

Case study protocol

The sites chosen for the case studies reflect a range of institutions whose cultures could be expected to have an impact on students’ ability to learn how to learn. One is a traditional sandstone university (The University of Melbourne), one is a technological university (Queensland University of Technology, QUT) and one is a regional university (Central Queensland University, CQU). In each site, two major activities were implemented; one with students, the other with lecturers. The program worked with current students and staff across the three universities, to study this gap (between students and lecturers) by modelling a process of investigation, analysis, problem-solving, pedagogical design and implementation that develops a culture of shared responsibility between students and staff for creating learning outcomes.

The learning styles instrument chosen is Felder and Silverman’s Index of Learning Styles, ILS, (Felder, 1999), since it was developed for engineering students and was used in previous studies such as the one reported by Mills et al (2005). The ILS uses four dimensions to describe learning preferences. Each preference is rated on a scale from 1 to 11, with 11 being the strongest preference. The four dimensions can be described as in Mills et al (2005):

Active/Reflective: This dimension refers to processing of information. Active learners prefer trying things out and working with others. Reflective learners prefer to think things out and work alone.

Sensing/Intuitive: This dimension refers to ways of receiving information. Sensors like learning facts and using tried methods in practical settings. Intuitive learners are innovative and enjoy abstract concepts and new situations with untried methods.

Figure 1: Elements of the case study

Students were asked to complete a learning styles survey and participated in focus groups. Volunteering lecturers were asked to complete a learning styles survey and a teaching styles survey. In addition, an instance of their teaching was observed and they were also interviewed. The student focus groups and lecturers’ interviews assisted in obtaining an insight into the effects of the institutional culture. The diagram of figure 1 illustrates the elements of the case study and draws attention to their interconnectivity.
Boles, Hadgraft & Howard, Exploring synergies between learning and teaching in Engineering

Visual/Verbal: This dimension refers to ways of perceiving sensory information. Visual learners relate well to graphs, pictures, diagrams etc. Verbal learners enjoy reading and lectures.

Sequential/Global: This dimension refers to progress towards understanding. Sequential learners prefer taking logical steps towards an outcome. Global learners grasp the big picture quickly and work out the steps later.

The teaching styles instrument used is that of Grasha (1994). This has five categories of styles, namely: Expert, Formal Authority, Personal Model, Facilitator, and Delegator. However, Grasha (1996) claims that all teachers possess each of the qualities of the five styles to varying degrees. In a thematic analysis of his experiences, he found that four combinations, or clusters, of styles were evident. Teachers use some styles more often than others or use styles in combination. He further identified four clusters as shown in Table 1 below.

Table 1: Teaching methods

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Primary Styles</th>
<th>Secondary Styles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Expert/Formal authority</td>
<td>Personal model/ Facilitator/Delegator</td>
</tr>
<tr>
<td>2</td>
<td>Expert/Personal model/Formal authority</td>
<td>Facilitator/Delegator</td>
</tr>
<tr>
<td>3</td>
<td>Expert/ Facilitator/Personal model</td>
<td>Formal authority/Delegator</td>
</tr>
<tr>
<td>4</td>
<td>Expert/ Facilitator/Delegator</td>
<td>Formal authority/Personal model</td>
</tr>
</tbody>
</table>

In addition to the learning and teaching instruments, academic staff are invited to use K. P. Cross and T. Angelo’s Teaching Goals Inventory (Angelo, 1993) to help reflect on their self-assessments of teaching styles and actual interactions with students in the classroom.

Discussions of the immediate findings of the case studies formed the kernel of the workshops conducted at each of the participating institutions. Since the literature suggests that making the learning process and its potential barriers explicit can help enhance outcomes, the workshop intended to encourage participants to work together towards this goal.

Feedback to participants and the discipline forms an important part of the program. Individual academic staff participants will be receiving a summary reflecting on their survey and interview results and the findings of the observations. Where possible, this will be offered with some pointers and suggestions on how to move forward for creating a better learning – teaching nexus. Figure 2 describes the learning situation, linking pedagogical research with teaching, learning and institutional influence.

The process

At each university, a call for participation of academic staff was made, via information sheets, discussions and presentations to staff. These varied depending on the circumstance of each institution. The timing of conducting the studies was largely determined by semester schedules and staff and students timetables.

At CQU, Program Collaborator (Prue Howard) led the efforts of recruiting participants and organising staff interviews and class observation schedules. A parallel process was followed at the University of Melbourne, led by the Project Collaborator there (Roger Hadgraft). While leading the program, the ALTC Associate Fellow (Wageeh Boles) was in direct communication with colleagues at QUT via formal and informal meetings and discussions. In all cases, the Project Officer communicated with all involved and organised and kept track of activities. The Project Researcher was in charge of conducting the class observations and staff interviews. In addition, at each institution, student focus groups were scheduled and conducted with volunteering students.

The ALTC Associate Fellow, the Project Researcher and Project Officer facilitated three workshops conducted at the participating institutions. In addition to disseminating the findings so far, the workshops aimed at engaging the participants in activities leading to the start of a process of change. In view of the learning and teaching styles and the insights presented and discussed, the workshops focused on developing a process of critical self-evaluation and co-creation of more suitable pedagogies, and taking away a plan to apply in their own situation. A further workshop will be presented at this conference.
Preliminary findings

At this stage, considering staff interviews and scores of the learning styles inventories, we are able to provide the following brief comments. It must be warned that these are not meant to provide foundations for any generalisations, given the small number of participants. However, the comments would be useful for initiating discussions around possible ramifications for student learning.

Regarding learning styles, whilst most staff rated themselves primarily as visual learners, on the visual/verbal scale (See figure 3), and some staff rated highly on the verbal scale. This would highlight the importance of avoiding generalisations in describing learning styles and dealing with individuals as the case may be. This should also be considered when responding to students’ survey data.

For the highly visual academic staff, the fact that they routinely prepare many excessively wordy PowerPoint slides represents a clear contradiction. However, this may meet students’ expectations if not preferences, given that students may have come to expect it, due to the way we traditionally teach.

Most of the lecturers interviewed at all three universities identified the style of teaching they were exposed to as students, as mainly a matter of content transfer. In discussing their aims almost all interviewed staff said that content transfer was primary. This stance is consistent with their scores on the teaching inventory as primarily Formal Authority. At the same time many teachers seem to feel that they ‘ought’ to be more interactive and this would not be helpful for Formal Authority styles in relation to imparting content. We could ask many questions about this data including what counts as content but at this stage we have not explored this. It seems that the primary influence on teaching style is personal experience, often without much reflection added.

Preparing people to work was rated as a goal by participating academic staff although, in one case study, the average time spent in the workforce outside of a University by staff is just over four years. This probably contributes to a fact-and-theory approach although projects are much discussed. Added to this, the organisational requirements on staff to concentrate on research would further reduce the likelihood that they will spend time reflecting on or researching teaching issues.

Interviewed staff seldom resorted to professional advice or the education literature to address teaching matters. The lack of time to find and explore the literature and penetrate its jargon was most commonly cited as the reason.

The number of students who completed the Index of Learning Styles varied from one institution to the other, with QUT having maximum participation of 99, followed by Melbourne, 48 and CQU, 9. One factor affecting the low participation rate at CQU can be attributed to the fact that many students were at their industry placements at the time participation was solicited. Student responses to the LSI were
broadly similar across the three universities with the only strong preference being on the Visual scale with a lesser tendency towards Sensing on Sensory/Intuitive scale. Combining the LSI scores of all student participants, the results did not generally differ from those reported by Mills et al (2005).

Students' learning styles results together with comments they made through focus group discussions, demonstrated how staff aims, as expressed during their interviews, can affect student learning. For example, the modelling of engineering approaches observed in lectures is therefore likely to strike a chord with students who rate highly on the sensing scale. However, we would expect those students to be less happy with a highly unstructured approach to project work. This is in fact borne out by students' own comments in this study.

![Staff Learning Styles](image)

Figure 3: Staff Learning Styles (Act/Ref: Active/Reflective; Sen/Int: Sensing/Intuitive; Vis/Ver: Visual/Verbal; Seq/Glo: Sequential/Global.)

Discussion and conclusions

For many students, achieving at university can be seen as attempting to complete an obstacle course. As teachers, our role is to set up realistic targets that challenge students to reach new heights in understanding and practice. But in some cases, set tasks become insurmountable barriers leading to student failure or attrition. In reviewing the literature on learning and in particular on barriers to learning, three key areas emerge as being potentially challenging for students to such an extent that they may not succeed; Conceptual barriers or barriers associated with the nature of our disciplines themselves, Internal barriers and student characteristics, and External barriers. These barriers are obviously not independent of each other. It may be the case that a student who is underprepared mathematically for engineering study finds that their aspirations or motivations to become an engineer are eroded by classroom experiences. Such experiences can leave them feeling alone and isolated from the content they are studying, the academics that teach them, and their fellow students.

Much of the literature on student approaches to learning identifies overlapping influences on student learning that include student characteristics, teaching characteristics and contextual characteristics (such as the institutional or departmental culture) (Vermunt, 2005). Entwistle (2005) reports on the notion of congruence to describe "a whole range of interacting contributions" that impact on the achievement of "high-quality learning processes and outcomes" that includes congruence with students' backgrounds, knowledge and aspirations.

Therefore, mismatches between teaching and learning preferences and approaches are not the only factors to be considered in regards to possible barriers to learning. So, how does this interact with the question of matching or intentionally mismatching students' learning styles with lecturers' teaching styles? Can/should mismatches be intentionally created to simulate real work environments, where, as graduates, students will need to function effectively, in spite of circumstances beyond their control?
Boles, Hadgraft & Howard, Exploring synergies between learning and teaching in Engineering

The organisational requirements on academic staff to concentrate on research, often at the expense of scholarly teaching, greatly reduces the likelihood that they will spend time reflecting on or researching teaching issues. Therefore, there is a critical and immediate need for the higher education sector to have discipline-based learning and teaching research recognised as legitimate research.

The preliminary comments presented here indicate that there is a wealth of information still hidden within the student focus group discussions and staff interviews data. These will be the subject of more in-depth analysis, to further build synergies between teaching and learning approaches, for enhanced learning outcomes and improved retention rates.

References

Acknowledgements
We would like to acknowledge the support of the Australian Learning and Teaching Council, ALTC, for funding this work through an Associate Fellowship program. We would like to also acknowledge the contributions of Ms Hilary Beck (Project Officer) and Dr Lesley Jolly (Researcher). We would like to express our appreciation for the valuable advice, insights and support of Prof Neil Page (Program Evaluator) and the Project’s Reference Group: Prof Tom Angelo, Prof Holger Maier, A/Prof Julie Mills, Dr Martin Murray, Prof Peter O'Shea, and Ms Jillian Rowe. We also thank the colleagues and students who participated in this study.

Copyright © 2008 Wagee Boles, Roger Hadgraft, Prue Howard: The authors assign to AaeE and educational non-profit institutions a non-exclusive licence to use this document for personal use and in courses of instruction provided that the article is used in full and this copyright statement is reproduced. The authors also grant a non-exclusive licence to AaeE to publish this document in full on the World Wide Web (prime sites and mirrors) on CD-ROM and in printed form within the AaeE 2008 conference proceedings. Any other usage is prohibited without the express permission of the authors.