AN INVESTIGATION INTO THE TEN PERCENT FINES TEST AND OTHER TESTS USED TO DETERMINE THE STRENGTH OF ROAD MAKING AGGREGATES

by

Alexander Gustaaf Bernard Vanderstaay

PART 1, TEXT.

A thesis submitted to the Central Queensland University in

fulfilment of the requirements for the degree of Master of Engineering.

Submitted 9 September 1994.
Revised 29 March 1995.
ABSTRACT

An investigation into the Ten Percent Fines test for determining the "strength" of construction aggregates was undertaken. Correlations between this test and other aggregate "strength" tests including the Los Angeles Tests and the Aggregate Crushing Value Test were also developed. The investigation involved both a literature study and specific testing involving over 300 strength tests on a range of aggregate samples, covering a range of lithologies, particle sizes, particle morphologies, and moisture conditions.

The literature search located only a limited body of literature on this procedure, mainly in trade journals, although a much larger body of literature was located on both the Los Angeles and Aggregate Crushing tests. Testing revealed that particle morphology, principally the percentage of flaky material content, had a significant effect on strength as did aggregate moisture content. Aggregate "strength" was found to decrease with increasing flakiness and also moisture content.

A number of testing practice factors were also found to have significant impact on the reported strength. Factors resulting in higher apparent strength included increasing the rate of load application and compaction of the sample in the test mould. No consistently predictable relationship between "strength" and particle size was observed, but a trend of "strength" increase with decreasing particle size was observed. As a result of the investigation a series of draft test methods were prepared for Queensland Transport.

The major departures in these draft methods from the published method include;

(i) specification of drying/cooling conditions;
(ii) specification of sample compaction procedures;
(iii) application of a standard loading rate
(iv) change to discriminating sieve sizes for samples finer than 6.7mm.

These changes to the methods should improved the precision of the methods compared with the published methods.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>xvii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xviii</td>
</tr>
<tr>
<td>ABBREVIATIONS USED IN THIS THESIS.</td>
<td>xix</td>
</tr>
</tbody>
</table>

1. **INTRODUCTION**

1.1 **GENERAL**

1.2 **TESTS INVESTIGATED**

1.3 **RESEARCH PROBLEM AND HYPOTHESIS**

1.4 **JUSTIFICATION OF THE RESEARCH PROJECT.**

1.5 **METHODOLOGY**

(iii)
1.6 OUTLINE OF THIS THESIS.
1.7 DEFINITIONS AND ABBREVIATIONS.
1.8 LIMITATIONS AND KEY ASSUMPTIONS
LITERATURE REVIEW
2.1 INTRODUCTION
2.2 TEST FUNDAMENTALS
2.3 CORRELATIONS
2.4 PARTICLE MORPHOLOGY
2.5 LITHOLOGY
2.6 EFFECTS OF MOISTURE
2.7 TEST STANDARDS
2.8 TEST PRECISION

(iv)
3. METHODOLOGY

3.1 SAMPLES

3.2 SAMPLE PRETREATMENT

3.3 SAMPLE PREPARATION

3.4 TEST EQUIPMENT

3.5 LABORATORY PRACTICE

3.6 DATA SETS

3.7 DATA ANALYSIS

4. EXPERIMENTAL RESULTS AND ANALYSIS

4.1 TEST FUNDAMENTALS

4.2 CORRELATION ANALYSIS

4.3 PARTICLE MORPHOLOGY
7. APPENDICES PART 2.

TABLE OF CONTENTS (PART 2) A i

7.1 LITERATURE RESEARCH DATA A 1

7.2 RESEARCH DATA A 14

7.3 STATISTICAL ANALYSES A 68

7.4 DETAILS OF EQUIPMENT A 96

7.5 TEST METHODS A 103
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 2.3.1.1</td>
<td>CORRELATION MATRIX : LAT, ACT & TPFT</td>
<td>26</td>
</tr>
<tr>
<td>TABLE 2.3.3.1</td>
<td>SELECTED CORRELATIONS BETWEEN LAV AND ACV</td>
<td>33</td>
</tr>
<tr>
<td>TABLE 2.3.3.2</td>
<td>CALCULATED CORRELATION EQUATIONS USING ACV<30</td>
<td>34</td>
</tr>
<tr>
<td>TABLE 2.3.3.3</td>
<td>SELECTED CORRELATIONS BETWEEN LAV AND ACV, ACV<30</td>
<td>35</td>
</tr>
<tr>
<td>TABLE 2.3.4.1</td>
<td>SELECTED CORRELATIONS BETWEEN ACV AND TPFV</td>
<td>40</td>
</tr>
<tr>
<td>TABLE 2.3.4.2</td>
<td>TPFV, ACV CORRELATIONS DEVELOPED USING ACV<30</td>
<td>42</td>
</tr>
<tr>
<td>TABLE 2.3.4.3</td>
<td>SELECTED CORRELATIONS TPFV AND ACV, BASED ON ACV<30</td>
<td>42</td>
</tr>
<tr>
<td>TABLE 2.3.5.1</td>
<td>SELECTED CORRELATIONS BETWEEN LAV AND TPFV</td>
<td>45</td>
</tr>
<tr>
<td>TABLE 2.5.1</td>
<td>PUBLISHED LITHOLOGICAL CORRELATION</td>
<td>51</td>
</tr>
<tr>
<td>TABLE 2.6.1</td>
<td>TEMPERATURE EFFECTS, HANKS 1962</td>
<td>53</td>
</tr>
<tr>
<td>TABLE 2.7.1</td>
<td>AGGREGATE TEST STANDARDS</td>
<td>54</td>
</tr>
<tr>
<td>TABLE 2.7.1.1</td>
<td>Q206 : TEST PORTION GRADING AND BALL CHARGE</td>
<td>56</td>
</tr>
<tr>
<td>TABLE 2.7.1.2</td>
<td>AS1141 : TEST PORTION GRADING AND BALL CHARGE</td>
<td>57</td>
</tr>
<tr>
<td>TABLE 2.7.1.3</td>
<td>ASTM : TEST PORTION GRADING AND BALL CHARGE</td>
<td>58</td>
</tr>
<tr>
<td>TABLE 2.7.2.1</td>
<td>Q204 : SAMPLE SIZES AND SEPARATING SIEVE SIZES</td>
<td>60</td>
</tr>
<tr>
<td>TABLE 2.7.2.2</td>
<td>BS812 : SAMPLE SIZES AND SEPARATING SIEVE SIZES</td>
<td>61</td>
</tr>
<tr>
<td>TABLE 2.7.3.1</td>
<td>Q205 : SAMPLE SIZES AND SEPARATING SIEVE SIZES</td>
<td>64</td>
</tr>
<tr>
<td>TABLE 2.7.3.2</td>
<td>BS812 : SAMPLE SIZES AND SEPARATING SIEVE SIZES</td>
<td>65</td>
</tr>
<tr>
<td>Table Reference</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>TABLE 2.8.1</td>
<td>MAGNITUDE OF REPORTED LAT PRECISION STATEMENTS</td>
<td>70</td>
</tr>
<tr>
<td>TABLE 2.8.2</td>
<td>MAGNITUDE OF REPORTED ACT PRECISION STATEMENTS</td>
<td>71</td>
</tr>
<tr>
<td>TABLE 2.8.3</td>
<td>MAGNITUDE OF REPORTED TPFT PRECISION STATEMENTS</td>
<td>73</td>
</tr>
<tr>
<td>TABLE 3.1.1</td>
<td>SUMMARY OF PROPERTIES: LIMESTONE</td>
<td>77</td>
</tr>
<tr>
<td>TABLE 3.1.2</td>
<td>SUMMARY OF PROPERTIES: META-ARENITE</td>
<td>79</td>
</tr>
<tr>
<td>TABLE 3.1.3</td>
<td>SUMMARY OF PROPERTIES: ANDESITE</td>
<td>80</td>
</tr>
<tr>
<td>TABLE 3.1.4</td>
<td>SUMMARY OF PROPERTIES: GREENSTONE</td>
<td>81</td>
</tr>
<tr>
<td>TABLE 3.2.1</td>
<td>DETAILS OF HUMIDIFIER SOLUTIONS</td>
<td>86</td>
</tr>
<tr>
<td>TABLE 3.4.1.1</td>
<td>DETAILS OF SLOT SIEVES</td>
<td>89</td>
</tr>
<tr>
<td>TABLE 3.4.3.1</td>
<td>DETAILS OF NON STANDARD MOULDS</td>
<td>90</td>
</tr>
<tr>
<td>TABLE 3.6.1</td>
<td>APPROXIMATE NUMBER OF DATA POINTS IN DATA SETS</td>
<td>96</td>
</tr>
<tr>
<td>TABLE 4.1.2.1</td>
<td>VARIATION IN FINES CONTENT THROUGH CRUSHED SPECIMENS</td>
<td>107</td>
</tr>
<tr>
<td>TABLE 4.1.2.2</td>
<td>EFFECT OF FLAKINESS ON PARTICLE SIZE FOLLOWING TESTING</td>
<td>108</td>
</tr>
<tr>
<td>TABLE 4.1.2.3</td>
<td>GRADING AND FLAKINESS AFTER TESTING</td>
<td>110</td>
</tr>
<tr>
<td>TABLE 4.1.3.1</td>
<td>TPFT RESIDUAL</td>
<td>112</td>
</tr>
<tr>
<td>TABLE 4.2.1</td>
<td>NUMBER OF POINTS IN EACH CORRELATION DATA SET</td>
<td>115</td>
</tr>
<tr>
<td>TABLE 4.2.4.1</td>
<td>SUMMARY OF LAV AND TPFV CORRELATIONS, TOT DATA</td>
<td>117</td>
</tr>
</tbody>
</table>
FIG. 2.2.1.1 SHERGOLD & HOSKING'S 1959 DATA 20
FIG. 2.2.1.2 WEINERT'S 1980(b) DATA 21
FIG. 2.2.1.3 TURK AND DEARMAN'S 1989 DATA 22
FIG. 2.2.3.1 GRADING OF SAMPLES FOLLOWING ACV TESTING 24
FIG. 2.2.3.2 VARIATION OF GRADING WITH PROPORTION OF FLAKY MATERIAL 25
FIG. 2.3.3.1 DATA USED TO CALCULATE PUBLISHED LAV AND ACV CORRELATIONS 31
FIG. 2.3.3.2 PUBLISHED CORRELATION EQUATIONS RELATING LAV AND ACV 33
FIG. 2.3.3.3 CORRELATION EQUATIONS DEVELOPED USING ACV<30 36
FIG. 2.3.4.1 PUBLISHED CORRELATION EQUATIONS 7 TO 13, ACV AND TPFV 38
FIG. 2.3.4.2 PUBLISHED CORRELATION EQUATIONS 14 TO 18, ACV AND TPFV 39
FIG. 2.3.4.3 DATA USED TO CALCULATE PUBLISHED ACV AND TPFV CORRELATIONS 40
FIG. 2.3.4.4 CORRELATION EQUATIONS FOR ACV AND TPFV, ACV<30 43
FIG. 2.3.5.1 DATA USED TO CALCULATE PUBLISHED TPFV AND LAV CORRELATIONS 44
FIG. 2.3.5.2 PUBLISHED CORRELATION EQUATIONS RELATING LAV AND TPFV 45
FIG. 2.7.3.1 COMPARISON OF CALCULATION METHODS: BS AND QT 67
FIG. 2.8.1 LAV PRECISION, ASTM AND Q206 69
FIG. 2.8.2 ACV PRECISION, Q204 71
FIG. 2.8.3 TPFV PRECISION, Q205A AND Q205B. 72
FIG. 3.2.1 FLOW CHART : SAMPLE PREPARATION 83
FIG. 4.1.1.1 RELATION BETWEEN APPLIED LOAD AND SAMPLE 97
 COMPRESSION
FIG. 4.1.1.2 RELATION BETWEEN APPLIED LOAD AND PERCENTAGE OF 98
 FINES
FIG. 4.1.1.3 RELATION BETWEEN COMPRESSION AND PERCENTAGE OF 99
 FINES
FIG. 4.1.2.1 GRADING FOLLOWING LA TESTING 100
FIG. 4.1.2.2 GRADING FOLLOWING AC TESTING 101
FIG. 4.1.2.3 GRADING FOLLOWING TPF TESTING 101
FIG. 4.1.2.4 GRADING FOLLOWING LAT, ACT, TPFV : LIMESTONE 102
FIG. 4.1.2.5 GRADING FOLLOWING LAT, ACT, TPFT : UNIQUE CASE 103
FIG. 4.1.2.6 GRADING FOLLOWING TESTING AT CONSTANT LOAD. 104
FIG. 4.1.2.7 VARIATION OF GRADING WITHIN CRUSHED SPECIMEN 105
FIG. 4.1.2.8 EFFECT OF FLAKE ON GRADING 109
FIG. 4.1.2.9 VARIATION OF GRADING WITHIN CRUSHED SPECIMENS 110
FIG. 4.1.2.10 FLAKINESS OF PARTICLES FOLLOWING TESTING 111
FIG. 4.1.3.1 ANALYSIS OF RESIDUAL DATA 113
FIG. 4.2.4.1 LAV AND TPFV REGRESSION DATA 118
FIG. 4.2.4.2 RESULTS OF REGRESSION ANALYSIS 118
<table>
<thead>
<tr>
<th>FIG.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.5.1</td>
<td>ACV AND TPFV CORRELATION DATA, INCLUDING OUTLIERS</td>
<td>120</td>
</tr>
<tr>
<td>4.2.5.2</td>
<td>RESULTS OF REGRESSION ANALYSIS</td>
<td>121</td>
</tr>
<tr>
<td>4.2.6.1</td>
<td>ACV AND LAV CORRELATION DATA</td>
<td>124</td>
</tr>
<tr>
<td>4.2.6.2</td>
<td>RESULTS OF REGRESSION: ACV AND LAV</td>
<td>124</td>
</tr>
<tr>
<td>4.3.1.1</td>
<td>EFFECTS OF PARTICLE SIZE : ACV</td>
<td>128</td>
</tr>
<tr>
<td>4.3.1.2</td>
<td>EFFECTS OF PARTICLE SIZE : TPFV</td>
<td>129</td>
</tr>
<tr>
<td>4.3.1.3</td>
<td>NUMBER OF STONES -V- SAMPLE PARTICLE SIZE</td>
<td>131</td>
</tr>
<tr>
<td>4.3.1.4</td>
<td>DISTRIBUTION OF NUMBER OF STONES</td>
<td>132</td>
</tr>
<tr>
<td>4.3.1.5</td>
<td>NEW MOULD RESULTS</td>
<td>134</td>
</tr>
<tr>
<td>4.3.1.6</td>
<td>ALTERNATIVE DISCRIMINATING SIEVE ANALYSIS</td>
<td>135</td>
</tr>
<tr>
<td>4.3.2.1</td>
<td>EFFECTS OF SIZE AND Flake: TPFV, LIMESTONE</td>
<td>136</td>
</tr>
<tr>
<td>4.3.2.2</td>
<td>EFFECTS OF SIZE AND Flake : TPFV, META-ARENITE</td>
<td>137</td>
</tr>
<tr>
<td>4.3.2.3</td>
<td>EFFECTS OF Flake, STANDARD SIZE : TPFV</td>
<td>137</td>
</tr>
<tr>
<td>4.3.2.4</td>
<td>FLAKE CORRECTION FACTORS</td>
<td>138</td>
</tr>
<tr>
<td>4.3.2.5</td>
<td>FLAKE CORRECTION FACTOR : SIZE EFFECTS</td>
<td>139</td>
</tr>
<tr>
<td>4.3.3.1</td>
<td>RESULTS OF ROUNDING EXPERIMENTS</td>
<td>141</td>
</tr>
<tr>
<td>4.4.1</td>
<td>SCATTER PLOT : ADAMELLITE</td>
<td>144</td>
</tr>
<tr>
<td>4.5.1.1</td>
<td>DISTRIBUTION OF WET/DRY VARIATION RESULTS</td>
<td>147</td>
</tr>
<tr>
<td>4.5.2.1</td>
<td>CURED MOISTURE EFFECTS</td>
<td>149</td>
</tr>
<tr>
<td>4.6.4.1</td>
<td>EFFECT OF MIXED 19mm - 9.5mm AS GRADING.</td>
<td>153</td>
</tr>
<tr>
<td>4.6.7.1</td>
<td>EFFECTS OF VARYING SAMPLE MASSES</td>
<td>155</td>
</tr>
</tbody>
</table>
FIG. 4.6.7.2 NATA DATA : EFFECTS OF VARYING SAMPLE MASSES 156
FIG. 4.6.8.1 EFFECTS OF COMPACTION ON PERCENT FINES 158
FIG. 4.6.8.2 EFFECTS OF COMPACTION ON ESTIMATED TPFV 159
FIG. 4.6.8.3 RANGE OF DENSITIES ACHIEVED 163
FIG. 4.6.9.1 EFFECTS OF LOADING RATES 165
FIG. 4.6.10.1 RATE OF MOISTURE TAKEUP 166
FIG. 4.6.10.2 RATE OF MOISTURE TAKEUP 167
FIG. 4.6.10.3 EFFECTS OF MOISTURE ON TPFV 169
FIG. 4.6.10.4 EFFECTS OF COOLING TIME ON TPFV 170
FIG. 4.6.10.5 EFFECTS OF MOISTURE ON APPARENT WET/DRY VARIATION 170
FIG. 4.6.10.6 EFFECTS OF COOLING TIME ON APPARENT WET/DRY VARIATION 171
FIG. 4.6.11.1 RATE OF SIEVING OF FINES 171
FIG. 4.6.12.1 SLOPE DATA 173
FIG. 4.7.1 NATA 1991 DATA 175
FIG. 4.7.2 NATA 1991 DATA - FREQUENCY DISTRIBUTION 177
FIG 4.7.3 SIMULATION DATA DISTRIBUTION 181
FIG 4.7.4 DISTRIBUTION OF SLOPE / FORCE FINES RELATION. 181
FIG. 4.7.5 CUMULATIVE FREQUENCY DISTRIBUTIONS. 182
FIG. 4.7.6 CUMULATIVE FREQUENCY DISTRIBUTION OF SIMULATIONS 185
FIG. 4.7.7 ASSUMED PRECISION OF TPFV 187
FIG. 5.2.1.1 RELATION BETWEEN APPLIED LOAD AND PERCENTAGE FINES 189
FIG. 5.2.1.2 SLOPE/TPFV DATA 191

FIG. 5.2.4.1 TPFV_W, TPFV_D DATA SCATTER PLOT 194

FIG. 5.2.4.2 LAV/ACV_D CORRELATIONS 195

FIG. 5.2.4.3 ACV_D/TPFV_D CORRELATIONS 196

FIG. 5.2.4.4 TPFV_D/LAV CORRELATIONS 196

FIG. 5.2.4.5 CALCULATED AND THEORETICALLY DERIVED ACV, TPFV CORRELATIONS 198

(xvi)
ACKNOWLEDGMENTS

The research program described in this thesis, was made possible by the support provided by Queensland Transport (QT), specifically by Don Muir (Executive Director Central) and QT's Staff Study and Research Scholarship Programme.

Special thanks are also extended to Mr David Thomas of the Civil Engineering Department of the James Goldston Faculty of Engineering, Central Queensland University, for his guidance and interest in the research. The author is also grateful to Mr Henry Crichton and Mr Michael Currie of the Rockhampton Materials Testing Laboratory of Queensland Transport for their help and assistance during the research programme. Thanks must also go to the managers of Queensland Transport's fourteen District laboratories, as well as the Central Laboratory for making available records, and providing information pertinent to this research. Many thanks go to the Central Queensland Region office staff, particularly Miss Melissa Jarvis and Mrs Sue Thorpe for typing the manuscript and providing the author with advice on the use and operation of the wordprocessing package.

Finally, I would like to thank my wife Colleen for her support and understanding during the currency of this project, without which this thesis would never have been completed.
This author certifies that, except where otherwise specified in the text, this thesis is the result of original work. No part of this thesis has been submitted elsewhere for any other qualification.

A G B Vanderstaay

26/3/85
ABBREVIATIONS USED IN THIS THESIS

AC Aggregate crushing (test) generally.
ACT Aggregate Crushing Test, subscripts may be used to indicated whether the test was undertaken using a wet or dry sample, and to which standard.
 e.g. $\text{ACT}_{W,\text{AS}}$ = a wet ACT, determined according to the relevant Australian Standard.
ACV Aggregate Crushing Value, expressed in percentage units, subscripts may be used as for ACT.
AS Australian Standard.
ASnnnn A specific Australian Standard test procedure, see references for details.
ASTMnnn A specific ASTM test procedure, see references for details.
BS British Standard, as published by the British Standards Institution.
BSnnn A specific British Standard test method, see references for details.
CRB Country Roads Board, now known as VicRoads.
CRB Californian Bearing Ratio test.
cv Coefficient of variation.
DMR Department of Main Roads New South Wales, now known as Road and Transport Authority.
ISO International Standards Organisation.
LA Los Angeles (test) generally.
LAT Los Angeles Test, a subscript may be used to indicate the method. e.g. LAT$_{QT}$, a LAT, carried out according to the relevant Queensland Transport test method.

LAV Los Angeles Value, expressed in percentage units, subscripts have been used as described for LAT.

MC Moisture content.

n Number of data points used in a statistical analysis.

NATA National Association of Testing Authorities.

PIARC Permanent International Association of Road Congresses.

Qnnn Queensland Transport test method, see references for details.

QMRD Queensland Main Roads Department, amalgamated with several other Departments in 1989 to form Queensland Transport.

QR Queensland Rail. (formally known as Queensland Railways).

QT Queensland Transport (Department).

R Reproducibility of a test procedure.

r Repeatability of a test method.

ρ^2 Regression coefficient of correlation.

SABS South African Bureau of Standards.

SRA (Australian) State Road Authority.

SD Standard Deviation.

TPF Ten Precent Fines (test).

TPFT Ten Percent Fines Test. Subscripts have been used to indicate whether the test was undertaken on a wet or dry sample, and to which test standard. e.g. TPFT$_{W,BS}$, a wet TPFT, carried out according to the relevant British Standard.
TPFV The ten percent fines value expressed in kN, subscripts may be used as described for TPFT.

UCS Unconfined compressive strength.

W/D Wet/Dry variation which is defined as the difference between $TPFV_D$ and $TPFV_W$, expressed as a percentage of $TPFV_D$.

\[W/D = \frac{(TPFV_D - TPFV_W)}{TPFV_D} \times 100 \]

SUBSCRIPTS.

AS A test performed in accordance with the relevant Australian Standard test method.

ASTM A test performed in accordance with the relevant American Society for Testing and Materials Standard test method.

BS A test performed in accordance with the relevant British Standard test method.

D A dry test, applicable to ACT and TPFT.

i A test carried out in accordance with the Imperial system of measurement. ie. LAT, ACT or TPFT.

QT A test performed in accordance with the relevant Queensland Transport test method.

W A wet test, applicable to ACT and TPFT.