SPIDERS IN CENTRAL QUEENSLAND MANGO ORCHARDS:

DIVERSITY, DIESEL ACTIVITY AND IMPACT OF PESTICIDES.

by

Donna May Rayner, Bachelor Applied Science (Biology)
University of Central Queensland

A thesis submitted to the School of Biological and Environmental Science, Faculty of Arts, Health and Science, Central Queensland University

in conformity with the requirements for a degree of Master of Applied Science

ROCKHAMPTON, JULY, 2000
ABSTRACT

Spiders are naturally occurring predators of insects in agroecosystems. The use of broad spectrum pesticides in agriculture is likely to disrupted spider communities and have a negative impact on their role as biocontrollers. The overall abundance, the species richness, diversity and guild structure of spiders in tropical mango orchards in central Queensland were investigated in this study. Experiments were performed to assess the potential of spiders as natural predators to pest insects in mango orchards. The effects of pesticides on the spider communities were assessed to establish the extent to which the communities were disrupted and the extent of recovery from this type of disturbance. The short term (acute) and long term (chronic) effects were investigated.

The spiders in unsprayed mango orchards were relatively high in abundance, species richness and species diversity. Spiders were present in significant numbers at all sampling times, both day and at night, and during all seasons. The results suggest that spiders do not capture large numbers of prey. However spider exhibit a diversity of capturing techniques so that they capture a variety of insects. The most common guild was the orb-weavers.

The spider abundance and diversity four days after spraying with methidathion suggested that recovery of spider after disruption such as the use of pesticides occurs quickly. Presumably this recovery occurs due to spiders moving into the orchard from surrounding bush land. The long term use of pesticide does appear to disrupt the community and as evidenced by decreases in the abundance, species richness and diversity of spiders.

While it is unlikely that pesticide usage will be eliminated in most commercial mango orchards, this study demonstrates that spiders are potentially important
biocontrollers and that they are adversely affected by pesticide use. In the longer term, it will be desirable to develop IPM strategies to minimise pesticide use and maximise the role of spiders as biocontrollers. Such strategies will depend on studies such as this one and extensions of it.
TABLE OF CONTENTS

Abstract	i
Title page	iii
Table of Contents	iv
List of Tables	vi
List of Illustrations	ix
Acknowledgements	xii
Declaration	xiii

CHAPTER 1 | Introduction to mangoes, spiders and pesticides | 1

CHAPTER 2 | SPIDER COMMUNITIES IN CENTRAL QUEENSLAND MANGO ORCHARDS | 21
 2.1 | Introduction | 21
 2.2 | Materials and Methods | 24
 2.2.1 | The mango orchards | 24
 2.2.2 | Spider sampling | 24
 2.2.3 | Data analysis | 27
 2.3 | Results | 30
 2.3.1 | Species composition of spiders | 30
 2.3.2 | Fluctuations in spider abundance | 33
 2.3.3 | Species richness and diversity | 35
 2.3.4 | Guilds | 37
 2.4 | Discussion | 41

CHAPTER 3 | SPIDERS AS PREDATORS OF PESTS IN MANGO ORCHARDS | 49
 3.1 | Introduction | 49
 3.2 | Methods and Materials | 52
 3.2.1 | Preliminary Observations | 52
 3.2.2 | Twenty-four hour Surveys | 52
 3.2.3 | Insects Trapped | 53
 3.2.4 | Analysis | 54
 3.3 | Results | 56
 3.3.1 | Spiders | 56
 3.3.2 | Insect activity | 63
 3.3.3 | Prey Captured | 71
 3.4 | Discussion | 76

CHAPTER 4 | ACUTE AND CHRONIC EFFECTS OF PESTICIDES ON SPIDER COMMUNITIES | 86
 4.1 | Introduction | 86
 4.2 | Methods and Materials | 89
 4.2.1 | The analysis of the chronic effects of pesticides using univariate methods | 89
4.2.2 The multivariate analysis of the chronic effects of pesticides
4.2.3 The acute effects of pesticides
4.3 Results
4.3.1 Differences in species composition between sprayed and frequently sprayed orchards
4.3.2 Univariate analysis of the chronic effects of pesticides
4.3.3 Multivariate analysis of the chronic effects of pesticides
4.3.4 Acute effects of pesticides
4.4 Discussion

CHAPTER 5 Conclusions and Recommendations for Future Study

References 127
Appendix 1 130
Appendix 2A 138
Appendix 2B 139
Appendix 3 140
LIST OF TABLES

Table 1.1: The most commonly used pesticides used in mango orchards in central Queensland mango orchards with the toxicity to humans and the longevity in nature.

Table 1.2: A summary of the research performed on predatory spider behaviour in crops in each country.

Table 2.1A: Summary of the temperature and rainfall for the nearest weather station at Rockhampton, from 1992 to 1996.

Table 2.1B: Summary of the temperature and rainfall for the nearest weather station at Rockhampton, from January to December, 1994

Table 2.2: Summary of the number and species of spider (or specimen number) collected from three unsprayed mango orchards for 21 sampling periods from October, 1993 to January, 1996.

Table 2.3: Calculated Shannon-Wiener Diversity Indices from data taken from Appendix 1 in Russell-Smith And Stork (1995)

Table 3.1: The spiders observed in a 24 hour period (Survey 1 - 27/28-Oct-96) in an unsprayed mango orchards.

Table 3.2: The spiders observed in a 24 hour period (Survey 2 - 10/11-Oct-96) in an unsprayed mango orchards.

Table 3.3: The total number of insects collected in sticky traps from four mango trees over a 24 hour period (Survey 1 - 27/28-Oct-96) in an unsprayed mango orchard.

Table 3.4: The total number of insects collected in sticky traps from four mango trees over a 24 hour period (Survey - 10/11-Nov-96) in an unsprayed mango orchard.

Table 3.5: The number and type of insects collected from spider webs in an unsprayed mango orchard before dawn and mid-morning over a 1 hour period at five different sampling times.

Table 3.6: The total number of prey collected by spiders in a 24 hour period (Survey 1 - 27/28-Oct-96) in an unsprayed mango orchards.

Table 3.7: The total number of prey collected by spiders in a 24 hour period (Survey 2 - 10/11-Nov-96) in an unsprayed mango orchard.

Table 3.8: Prey species caught by spiders compared with trapped
species.

Table 3.9: A comparison of the total number of spider observed and the number of those spiders which had prey over a 24 hour period.

Table 4.1: Summary of the number and species of spiders collected from three unsprayed (Un) and three frequently (Freq) sprayed mango orchard for 21 samplings from October, 1993 to January, 1995.

Table 4.2: A summary of the total number and percentages of spiders and spiders in each family, collected from unsprayed and frequently sprayed mango orchards for 21 sampling periods from October, 1993 to January, 1995.

Table 4.3: Summary of two-factor ANOVA's for mean numbers of spiders, number of species and Shannon-Wiener diversity indices unsprayed, frequently and infrequently sprayed orchards and sampling times for (October, 1993 to October, 1994).

Table 4.4: Summary of two-factor ANOVA's for mean numbers of spiders, number of species and Shannon-Wiener diversity indices amongst unsprayed and frequently sprayed orchards and sampling times for (December, 1994 to January, 1996).

Table 4.5: Summary of three-factor ANOVA's for mean numbers of immature and adult spiders (March, May, August and October, 1994).

Table 4.6: Summary of three-factor ANOVA's for mean numbers of immature and adult spiders (December, 1994 to January, 1996).

Table 4.7: Results of three-factor ANOVA for numbers of spiders in guilds, orchard types and sampling time (October, November, December, 1993; March, May, August and October, 1994).

Table 4.7A: The Bonferroni test results for guild x orchard interaction for three-factor ANOVA of frequently, infrequently and unsprayed orchards for October, November, December, 1993; March, May, August and October, 1994.

Table 4.7B: The Bonferroni test results for guild x months interaction for three-factor ANOVA of frequently, infrequently and unsprayed orchards for October, November, December, 1993; March, May, August and October, 1994.

Table 4.8: Results of three-factor ANOVA for numbers of spiders in guilds, orchard types and sampling times (October, 1993 to October, 1994).
Table 4.8A: The Bonferroni test results for guild x months interaction for 3-way ANOVA of frequently and unsprayed orchards for December, 1994 to January, 1996.
LIST OF ILLUSTRATIONS

Figure 2.1: Map of the central Queensland coastal area showing the locations of the unsprayed, frequently and infrequently sprayed orchards.

Figure 2.2: Mean number of spiders collected in unsprayed orchards from October, 1993 to January, 1996 (n=3).

Figure 2.3: Mean number of immature spiders collected in unsprayed mango orchards from March, 1994 to January, 1996 (n=3).

Figure 2.4: Mean number of adult spiders collected in unsprayed mango orchards from March, 1994 to January, 1996 (n=3).

Figure 2.5: Number of *Araneus sp.*, *Argiope aetheria*, *Badumna sp.* 56 and *sp.* 20a collected in the unsprayed mango orchards from October, 1993 to January, 1996 (n=3).

Figure 2.6: Mean number of spider species collected in unsprayed mango orchards from March, 1994 to January, 1996 (n=3).

Figure 2.7: Mean Shannon-Wiener Diversity Indices for unsprayed mango orchards from March, 1994 to January, 1996 (n=3).

Figure 2.8: Total number of spiders collected in four guilds in unsprayed orchards from October, 1994 to January, 1996 (n=3).

Figure 2.9: Mean number of spiders in each guild collected from unsprayed mango orchards from March, 1994 to January, 1996 (n=3).

Figure 3.1: A comparison of the spider and predatory insect guilds observed in four trees in an unsprayed mango orchard (Survey 1 - 27/28-Oct-96).

Figure 3.2: A comparison of the spider and predatory insect guild observed in four trees in an unsprayed mango orchard (Survey 2 - 10/11-Nov-96).

Figure 3.3: Survey 1 comparison of number of spiders and insects over the twenty-four hour period (27/28-Oct-96).

Figure 3.4: Survey 2 comparison of number of spiders and insects over the twenty-four hour period (10/11-Nov-96).

Figure 3.5: The number of spiders compared to the number of trapped insects over all times of two surveys in an unsprayed mango orchard.
Figure 3.6: The number of spiders and the number of prey caught by these spiders in an unsprayed mango orchard for two surveys.

Figure 3.7: A comparison of prey caught by spiders and insects collected in sticky traps from four trees in an unsprayed mango orchard (Survey 1 - 23/24-Oct-96).

Figure 3.8: A comparison of prey caught by spiders and insects collected in sticky traps from four trees in an unsprayed mango orchard (Survey 2 - 10/11-Nov-96).

Figure 3.9: The total number of insects collected in sticky traps compared with the number of prey caught in webs over all times of the two surveys in an unsprayed orchard.

Figure 3.10: The number of spiders compared to the ratio of prey to spiders in an unsprayed mango orchard from two surveys.

Figure 3.11: The number of insects trapped compared to the ratio of prey caught to spiders in an unsprayed mango orchard from two surveys.

Figure 4.1: Mean number of spiders collected in unsprayed, frequently and infrequently sprayed mango orchards from October, 1993 to October, 1994 (n=3,3,6 respectively).

Figure 4.2: Mean number of spiders collected in unsprayed and frequently sprayed mango orchards from December, 1994 to January, 1996 (n=3,3 respectively).

Figure 4.3: Mean number of immature spiders collected in unsprayed, frequently and infrequently sprayed mango orchards from March, 1994 to October, 1994 (n=3,3,6 respectively).

Figure 4.4: Mean number of adult spiders collected in unsprayed, frequently and infrequently sprayed mango orchards from March, 1994 to October, 1994 (n=3,3,6 respectively).

Figure 4.5: Mean number of immature spiders collected in unsprayed and frequently sprayed mango orchards from December, 1994 to January, 1996 (n=3,3 respectively).

Figure 4.6: Mean number of adult spiders collected in unsprayed and frequently sprayed mango orchards in December, 1994 to January, 1996 (n=3,3 respectively).

Figure 4.7: Mean number of spider species collected in unsprayed, frequently and infrequently sprayed mango orchards from October, 1993 to October, 1994 (n=3,3,6 respectively).
Figure 4.8: Mean number of spider species collected in unsprayed and frequently sprayed mango orchards from December, 1994 to January, 1996 (n=3,3 respectively).

Figure 4.9: Mean Shannon-Wiener Diversity Indices for unsprayed, frequently and infrequently sprayed mango orchards from October, 1993 to October, 1994 (n=3,3,6 respectively).

Figure 4.10: Mean Shannon-Wiener Diversity Indices unsprayed and frequently sprayed mango orchards from December, 1994 to January, 1996 (n=3,3 respectively).

Figure 4.11: Mean number of spiders in each guild collected for the total number in unsprayed, frequently and infrequently sprayed mango orchards from October, 1993 to October, 1994 (n=3,3,6 respectively).

Figure 4.12: Mean number of spiders in each guild collected during sampling of unsprayed and frequently sprayed mango orchards from December, 1994 to January, 1996 (n=3,3 respectively).

Figure 4.13: Multidimensional Scaling for unsprayed and frequently sprayed orchards (October, 1994 to October, 1995).

Figure 4.14: Total number of spider collected from sprayed and unsprayed trees before, 4 and 11 days after spraying with methidathion.

Figure 4.15: Shannon-Wiener Diversity Indices from sprayed and unsprayed trees before, 4 and 11 days after spraying with methidathion.

Figure 4.16: Number of spiders in each guild in unsprayed and sprayed trees before, 4 days and 11 days after spraying with methidathion.
ACKNOWLEDGEMENTS

I would like to express my thanks to the mango growers for their cooperation and assisted Mr and Mrs Houghton, Mr D. Vaughan, Mr and Mrs Vaughan, Mr and Mrs George, Ms Tittle, Mr and Mrs Wyatt, Mr and Mrs Groves, Mr and Mrs Halfpenny, Mr and Mrs Gill, Mr and Mrs Fitchen, Mr and Mrs Thompson and Mr and Mrs Hinton.

I gratefully acknowledge the Queensland Museum staff Dr R. Raven, Dr V. Todd-Davies and P. Lawless for their support and use of equipment and Arachnology reference collection. I acknowledge Professor Midmore and the Plant science group at Central Queensland University for their support, the use of office space and equipment. Thanks to Dr Steve McKillip and Dr Ross Shepherd for their assistance with statistics. Barrie Elliott and Wayne Houston for assistance in the field.

Special gratitude to my supervisors Dr R Newby and Dr M Coastes for their valuable critique and assistance. I also thank Barrie, my family and friends and numerous other people who supported me this project over the years.

This study was partially funded by a ARC grant.
I, the undersigned author, declare that this is my own work and has not been submitted in any other form for any other award at any institution of tertiary education. Information from the published or unpublished works of all other persons has been acknowledged in full in the text, and a complete list of references is provided.

Donna May Rayner