THE EFFECT OF HOLDING TIME
ON THE MECHANICAL PROPERTIES
OF AUSTEMPERED DUCTILE IRON

by

Dody Prayitno

Thesis submitted to
The Central Queensland University
in Fulfilment of the Requirements
for the Degree of

MASTER OF ENGINEERING

Departement of Mechanical Engineering
James Goldston Faculty of Engineering
Central Queensland University
Rockhampton, Queensland , Australia

January, 1996
ABSTRACT

Some factories in Indonesia plan to produce Austempered Ductile Iron (ADI), because this material offers some advantages over other cast irons, such as having excellent fatigue properties and also being cheaper than steel. This thesis describes some experiments done to study the effect of some variants in the austempering process on mechanical properties, especially fatigue of ADI. In particular the effect of holding time on fatigue properties of ADI were studied, and an attempt was made to answer the question "Can the stress concentration factor theory proposed by Kubicki be applied to ductile cast iron and ADI?". This stress concentration model enables quantification of the influence of both matrix yield strength and size of inclusions on the endurance limit of inhomogeneous material. Initially some laboratory experiments were done such as tensile tests, hardness tests and fatigue tests. The tensile and hardness data are plotted on a histogram diagram while the fatigue results are plotted on an S-N curve. The results of the calculations were compared with the fatigue test results. The conclusions are:

Increasing holding time can decrease the mechanical properties of ADI;
Comparing Kubicki's theoretical result with the fatigue test result shows quite strong agreement.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>ii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
</tr>
</tbody>
</table>

1. INTRODUCTION
 1.1. Background 1
 1.2. Scope 2
 1.3. Objectives 2

2. GENERAL REVIEW OF CAST IRON 3
 2.1. Constitution and Structure of Cast Iron 3
 2.1.1. Carbon Equivalent Value 4
 2.1.2. Melting Point 4
 2.1.3. Graphite 4
 2.1.4. The Critical Temperature Range 5
 2.1.5. Typical Microstructure of Cast Iron 6
 2.2. Mechanical and Physical Properties of Cast Iron 10
 2.2.1. The Tensile Strength 11
 2.2.2. Proof Stress 12
 2.2.3. The Hardness Test 13
 2.2.4. Fatigue Resistance 13
 2.2.5. Damping Capacity 16
 2.3. General Properties of Commercial Cast Iron 16
 2.3.1. Effect of Alloys 19
4.1.2.3.3. Shot Peening
4.1.2.4. Influence of Grain Size on Stress Fatigue Limit
4.1.2.5. The Influence of Chemical Composition on Fatigue Strength
4.1.2.6. The Influence of Heat Treatment on Fatigue Strength
4.1.3. The Rotating Beam - Fatigue Machine
4.1.4. Stress Ratio and Applied Stress
4.2. Hardness Test
4.3. Tensile Test
4.3.1. True Stress and Strain

5. AN ATTEMPT TO DESCRIBE THE PROBLEM THEORETICALLY
5.1. Fatigue in Plastic Region
5.2. Plastic Region
5.3. K Factor Determination

6. RESEARCH METHODOLOGY
6.1. The flow Chart of Research
6.2. Making Nodular Cast Iron
6.3. The Austempering Process
6.4. Dimension of Test Specimens
6.5. Testing
6.5.1. Metallography
6.5.2. Chemical Composition Checking
6.5.3. Hardness Test
6.5.4. Tensile Test
6.5.5. Fatigue Test
6.6. Statistical Analysis of Fatigue Data
6.6.1. Establishing of Mean and 95% Survival Curve
DECLARATION

I certify that this thesis does not incorporate, without acknowledgment, any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief, it does not contain any material previously published or written by another person where due reference is not made in the text.

[Signature]

Dody Prayitno
ACKNOWLEDGEMENT

Thanks are due to The rector of Trisakti University, Bogdan Kubicki, Sriati Djaprie, PT Tatung Budi, PT Tira Austenit, PT Dendrit, The University of Indonesia, My wife and Children, Irma and Peter, for their assistance and support in the preparation of this thesis.
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Basic Structural Constitution of Cast Iron and Steel</td>
<td>10</td>
</tr>
<tr>
<td>2. Tensile Test, BS 1452; 1961</td>
<td>11</td>
</tr>
<tr>
<td>3. Nodular Cast Iron, BS 2789; 1973</td>
<td>11</td>
</tr>
<tr>
<td>4. Nodular Cast Iron</td>
<td>11</td>
</tr>
<tr>
<td>5. Fatigue Strength of Cast Iron</td>
<td>15</td>
</tr>
<tr>
<td>6. Alloying Elements</td>
<td>20</td>
</tr>
<tr>
<td>7. Effect of Alloy Addition on Tensile Strength</td>
<td>20</td>
</tr>
<tr>
<td>8. Wohler Type Fatigue Test Results Reported BCIRA</td>
<td>25</td>
</tr>
<tr>
<td>9. Results of Fatigue Test on Crankshaft for 2.2 Litre Engine (All Crankshaft Fillet Rod)</td>
<td>34</td>
</tr>
<tr>
<td>10. Calculating 95 % Survival limit</td>
<td>75</td>
</tr>
<tr>
<td>11. Brinell Number of AS CAST</td>
<td>78</td>
</tr>
<tr>
<td>12. Brinell Number of Iron I</td>
<td>78</td>
</tr>
<tr>
<td>13. Brinell Number of Iron II</td>
<td>79</td>
</tr>
<tr>
<td>14. Brinell Number of Iron III</td>
<td>79</td>
</tr>
<tr>
<td>15. As Cast Fatigue Results</td>
<td>80</td>
</tr>
<tr>
<td>16. Iron I Fatigue Results</td>
<td>81</td>
</tr>
<tr>
<td>17. Iron II Fatigue Results</td>
<td>82</td>
</tr>
<tr>
<td>18. Iron III Fatigue Results</td>
<td>83</td>
</tr>
<tr>
<td>19. Surface Roughness</td>
<td>84</td>
</tr>
<tr>
<td>20. Chemical Composition</td>
<td>84</td>
</tr>
<tr>
<td>21. As Cast Graphite Nodule Diameter</td>
<td>84</td>
</tr>
</tbody>
</table>
22. Iron I Graphite Nodule Diameter
23. Iron II Graphite Nodule Diameter
24. Iron III Graphite Nodule Diameter
25. Tensile Strength of As Cast
26. Tensile Strength of Iron I
27. Tensile Strength of Iron II
28. Tensile Strength of Iron III
29. As cast Fatigue Statistical Analysis
30. Iron I Fatigue Statistical Analysis
31. Iron II Fatigue Statistical Analysis
32. Iron III Fatigue Statistical Analysis
33. Graphite Diameter Distribution of Samples
34. Stress Intensity Factor
35. Kth Values as Function of Microstructure
36. Comparing K Value with Kth
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Iron Carbon Equilibrium Diagram</td>
<td>3</td>
</tr>
<tr>
<td>2. Graphite Type or Form</td>
<td>5</td>
</tr>
<tr>
<td>3. Effect of Silicon on The α to γ Transformation Temperature of Unalloyed Steel and Cast Iron.</td>
<td>6</td>
</tr>
<tr>
<td>4. Undercooled Graphite</td>
<td>6</td>
</tr>
<tr>
<td>5. Random graphite with a Pearlite Matrix and Low Phosphorus</td>
<td>7</td>
</tr>
<tr>
<td>6. Mottled Iron, Graphite, Pearlite, Cementite, and Phosphite</td>
<td>7</td>
</tr>
<tr>
<td>7. Martensite Grey Iron Unalloyed. Oil Quenched from 800 °C</td>
<td>8</td>
</tr>
<tr>
<td>8. Accicular Structure of Iron of Composition Total Carbon 2.9 %, Silicon 1.67 %, Manganese 1.06 %, Sulfur 0.08 %, Phosphorus 0.048 %, Nickel 1.07 %, Molybdenum 0.83 %</td>
<td>9</td>
</tr>
<tr>
<td>9. Austenitic Cast Iron (Ni-rest) Showing Free Carbide</td>
<td>9</td>
</tr>
<tr>
<td>10. Austenitic Cast Iron Showing Martensite Transformation as a Result of Exposure to a Temperature of -60 °C</td>
<td>10</td>
</tr>
<tr>
<td>11. Typical Fatigue Curve for Cast Iron</td>
<td>14</td>
</tr>
<tr>
<td>12. Damping Capacity of Three Material samples</td>
<td>16</td>
</tr>
<tr>
<td>13. Tensile Strength, CE Value and Bar Diameter Relationships</td>
<td>16</td>
</tr>
<tr>
<td>14. Variation of Strength of Cast Iron With Bar Diameter</td>
<td>17</td>
</tr>
<tr>
<td>15. Diagram Relating section Size, CE Value and Structure</td>
<td>18</td>
</tr>
<tr>
<td>16. Tensile Strength (Tons/in^2) Versus Total Carbon (Si + P less than 2.5 %) for 1.2 Bar of Uninoculated and unalloyed Grey Iron</td>
<td>19</td>
</tr>
</tbody>
</table>
17. Constitution of Nickel - Silicon - Iron with 3.5 Carbon
18. Effect of Ferrite Content of Matrix on Tensile Properties
19. Relationship between Silicon content and Hardness in Ferritic Nodular Iron.
20. General Relationship between Hardness Value and Ferritic content of Matrix.
21. ADI Components Manufactured by NV Ferromatrix, Belgium, for Carpet and Velvet looms
22. Schematic Diagram Illustrating The Various Phases in the Austempering process
23. Effect of isothermal reactions Temperature and Time on the percentage of Retained Austenite.
24. (A). Bainite Formed at 348 °C
 (B) Bainite Formed at 278 °C
25. The Structure of Bainite Transformed at 733 K as Revealed by The Electron Microscope.
26. The Structure of Bainite Transformed at 523 K as Revealed by The Electron Microscope.
27. Comparison of The Tensile Strength and Ductility of ADI and other Grades of Ductile Cast Iron.
29. Jominy Curve for a Ductile Iron (3.9 % C, 2.2 % Si, 0.04 % Mg, residual Mn, Ni, Cu, Cr, V, Ti) Austenized at 870 and 925 °C
30. Time to 5 % Transformed for a Low - Alloy Ductile Iron Austenized at 870 and 925 °C
31. Effect of Austempering Time on Carbon Content in Matrix
32. Effect of Austempering Temperature on Properties of Ductile Iron
 (a) Yield strength and Tensile Strength Versus Austempering Temperature 38
33. Elongation Versus Austempering time 39
34. Impact Strength Versus Austempering 39
35. Effect of Silicon and Austempering Temperature on Tensile Strength of Ductile Cast Iron with 2 % Si (A) and 2.9 % Si (B) 40
36. Effect of Copper on Tensile Strength of ADI 41
37. Effect of Nickel Content on Tensile Strength of ADI 41
38. Fatigue Fracture Marks 43
39. The Difference in the Surface Contours where Slip Bands Intersect The Surface (a) One Directional Deformation; (b) Alternating Deformation 45
40. This Five Step Dislocation Process Can Explain The Production of Extrusion and Intrusion at The Surface. 46
41. This Drawing Illustrates The Relationship of The Stage I and Stage II Crack Growth Process in Fatigue Failure. 47
42. Fatigue Crack Propagation Mechanism 48
43. Fatigue of Metallic Material 49
44. Relation between Endurance Limit and Tensile Strength for Various Metals 50
45. The Effect of Decarburization on The Fatigue Strength of Steel 51
46. Influence of Grain Size on the S-N Curve 52
47. Fatigue Limit Versus Percentage of Martensite 53
48. (a) Rotating Beam Fatigue Machine (b) Fatigue Specimen is bent while it rotates any point in the reduced middle section alternates between states of tensile and compressive 54
49. A Typical S-N Curve for Steel
50. A Typical S-N Curve for a Non Ferrous Metal
51. Nomenclature to Describe Test Parameters Involved in Cyclic Stress Testing
52. Schematic Drawing of a Tensile - Testing Apparatus
53. Engineering Stress- Strain Diagram For Polycrystalline Copper
 (a) Complete Diagram; (b) Elastic Region and Initial Plastic region showing 0.2 % offset Yield Strength
54. Comparison of Engineering and True Stress-Strain Curves
55. Range of Plastic Zone
56. Stress Intensity Coefficient Approximate Function.
57. Data and first " Mean Curve " Approximation
58. Division Into Groups
59. Calculating " Mean Curve " Position
60. Second Approximation Mean Curve
61. 95 per cent Survival Curve
62. Normal Distribution Curve
63. Hardness Testing Result
64. Tensile Testing Result
65. S-N Curve of As Cast
66. S-N Curve of Iron I
67. S-N Curve of Iron II
68. S-N Curve of Iron III
69. Endurance Limit
70. Graphite Nodule Diameter Distribution
71. Comparison Stress Intensity Factor with Kth