A decision-making framework for ecological impacts associated with accumulation of cyanotoxins (cylindrospermopsin and microcystin)

Susan H. White¹, Leo. J. Duivenvoorden¹, Larelle. D. Fabbro¹

¹ Freshwater Ecology Group, Centre for Environmental Management, Central Queensland University, Bruce Highway, Rockhampton Queensland 4702, Australia.

Corresponding author: Susan White
Biological and Environmental Sciences
Building 6, Central Queensland University
Bruce Highway, Rockhampton QLD
Australia 4702

Email: s.white@cqu.edu.au
Phone: (07) 4930 9647
Fax: (07) 4930 9209

Running title: Modelling cyanotoxin bioaccumulation and risk
Abstract

Toxins produced by cyanoprokaryotes are a key issue in aquatic management due to their potential to exert adverse effects on humans and aquatic biota. However, the information gap regarding bioaccumulation and biomagnification processes associated with cyanotoxins has resulted in inadequacies in the management and maintenance of biological diversity in lakes and reservoirs affected by toxic cyanoprokaryote blooms. This paper examines the potential for, and effects of, bioaccumulation of two common cyanotoxins, microcystin and cylindrospermopsin, in aquatic organisms. Factors influencing cyanotoxin bioavailability are discussed in context of the challenges associated with understanding and managing toxin accumulation. Based upon characteristics of cyanotoxin bioavailability, exposure and uptake routes, a theoretical predictive model for cyanotoxin bioaccumulation is proposed. Key concepts include monitoring changes in toxin availability throughout the progression of a toxic bloom, and the prediction of ecological effects based on internal tissue concentrations. The model explores the minimum requirements managers must undertake to order to properly assess bioaccumulation risk in terms of frequency of toxin testing, toxin fraction determination, and assessment of aquatic organisms.

Keywords: bioaccumulation, blue-green algae, cyanoprokaryotes, cylindrospermopsin, ecological risk assessment, microcystin, modelling.
Introduction

Reports of lakes and reservoirs affected by toxic cyanoprokaryote (blue-green algal) blooms are increasing internationally (e.g. Frank 2002; Bouvy et al. 2000; Chorus & Bartram 1999; Padisák 1997). Such blooms demand attention because of their toxicity to terrestrial and aquatic animals, and the possible health risks posed for humans in recreational and drinking-water storage bodies (Carmichael et al. 2001; Falconer 2001; Carmichael & Falconer 1993).

Two globally common freshwater toxins are cylindrospermopsin (CYN), produced by strains of *C. raciborskii*, *Umezakia natans*, *Aphanizomenon ovalisporum*, *Anabaena bergii var limnetica* and *Raphidiopsis curvata* (Li et al. 2001; Schembrii et al. 2001; Shaw et al. 1999); and microcystin (MC), produced by *Microcystis*, *Anabaena*, *Oscillatoria* and *Nostoc* (Rinehart et al. 1994; Botes et al. 1984). These toxins exert acute and chronic lethal and sublethal effects on a range of organisms: historically, Schwimmer & Scwhimmer (1968) gave accounts of deaths linked to blue-green algal intoxication in cattle and sheep, horses, dogs, cats, domestic fowl (geese, chickens, ducks), birds, squirrels, mice, turkeys and extensive fish kills. More recent work has also demonstrated a range of sublethal effects to other aquatic flora and fauna, including growth inhibition and reproductive effects in zooplankton (Ferrão-Filho & Azevedo 2003; Ferrão-Filho et al. 2002), macroinvertebrates and aquatic insects (Beattie et al. 2003; Hiripi et al. 1998; Delaney & Wilkins 1995), accumulation in crayfish (Saker & Eaglesham 1999; Lirås et al. 1998) and reduced growth in aquatic plants (Pflugmacher 2002; Romanowska-Duda & Tarczynska 2002; Kirpenko 1986). In humans, adverse health effects associated with MC and CYN include gastrointestinal complaints, skin allergies, and possibly, tumour promotion.
and increased risk of primary liver cancer (Falconer 2001; Xu et al. 2000; Ueno et al. 1999). MCs were found responsible for the deaths of dialysis patients treated with water from the microcystin-containing Tabocas reservoir (Komarek et al. 2001), whilst CYN was implicated in the so-called Palm Island mystery disease, which resulted in the hospitalisation of over 100 children suffering acute gastroenteritis (Hawkins et al. 1985; Byth 1980).

This paper examines the potential for increased toxicity of MC and CYN due to bioaccumulation and biomagnification processes. Currently, lack of data and scientific understanding regarding bioaccumulation has contributed to inadequacies in management procedures addressing the ecological and human health hazards associated with exposure. Here, a new management approach is suggested, whereby a predictive model is used to enable managers of affected lakes and reservoirs to gauge periods of high bioaccumulation risk based on toxin availability, and to estimate adverse effects to aquatic biota based on tissue toxin concentrations.

Bioaccumulation of cyanotoxins: evidence and effects

The extensive range of effects associated with direct cyanotoxin exposure in aquatic animals, and evidence of their dose-dependency (Vasas et al. 2002; Zimba et al. 2001; Chong et al. 2000; Carmichael 1996) provides a compelling argument to study the bioaccumulation and biomagnification potential of cyanotoxins in aquatic organisms.

Several factors indicate that cyanotoxins may bioaccumulate and biomagnify similarly to other toxicants such as heavy metals and pesticides (Sivonen & Jones
1999). CYN and MC are both stable (Harada 1996; Ohtani et al. 1992), which is considered necessary for accumulation to occur (van der Oost et al. 2003). Both also have structural features conducive to accumulation processes: MC is generally hydrophobic (Vesterkvist & Meriluoto 2003), which increases the likelihood of partitioning into lipid tissues of aquatic organisms, and, although being a quite large compound (800 – 1100 Daltons) (Sivonen & Jones 1999) is possibly cell permeant (Duy et al. 2000). Though CYN is hydrophilic, it is a relatively small compound (Shaw et al. 2000; Sivonen & Jones 1999) and is usually represented by extracellular toxin fractions (Griffiths & Saker 2003; Hawkins et al. 2001). Thus, CYN accumulation may result from contact via gills and dermal surfaces, or from accidental ingestion by drinking.

The octanol-water partitioning coefficient (K_{OW}), a value often used to indicate bioaccumulation potential, also suggests likely accumulation. Values of log $K_{OW} > 3$ are considered to have high potential (Franke et al. 1994): values for MC-LR, -LY, -LW and –LF were 2.16, 2.92, 3.46 and 3.56, respectively, when estimated using HPLC techniques (Ward & Codd 1999).

Lastly, the evolution of aquatic organisms alongside cyanoprokaryotes may have allowed the development of mechanisms to counter cyanotoxicity (Lirás et al. 1998), enabling organisms to continue to accumulate large amounts of toxins without side effects. Such organisms represent excellent vectors through which toxins can transfer up the food chain (Christoffersen 1996), thus enabling biomagnification.
To date, only two published works have examined bioaccumulation of CYN. Saker & Eaglesham (1999) detected CYN in the muscle, hepatopancreas and abdominal tissues of the crayfish *Cherax quadricarinatus*, at a maximum concentration of 4.3 μg g⁻¹ freeze dried tissue. Toxin was also reported from the visceral tissue of rainbow fish *Melanotaenia eachamensis* (1.2 μg g⁻¹ freeze dried tissue⁻¹). Most recently, Saker *et al.* (2004) reported accumulation of CYN in the swan mussel *Anodonta cygnea*, with maximum levels of 61.5 μg g⁻¹ (haemolymph); 5.9 μg g⁻¹ (viscera) and 2.52 μg g⁻¹ (whole body). In contrast, MC accumulation has been reported at ng to μg g⁻¹ levels in organisms representing all components of aquatic systems, including aquatic plants (Wiegand & Pflugmacher 2001), zooplankton (Ferrão-Filho *et al.* 2002b), snails (Ozawa *et al.* 2003; Zurawell 2001; Kotak *et al.* 1996), mussels and clams (Yokoyama & Park 2003;2002; Prepas *et al.* 1997; Williams *et al.* 1997; Eriksson *et al.* 1989), and higher animals including crayfish (Lirås *et al.* 1998; Vasconcelos 1995) and fish (Xie *et al.* 2004; Magalhães *et al.* 2001; Mohamed 2001).

A key issue surrounding bioaccumulation and biomagnification of cyanotoxins is the possibility for toxic blooms to exert greater toxicity, due to higher concentrations of internalised toxins being accrued in bodily tissues. Currently, there is a dearth of information regarding the sublethal effects of cyanotoxins, especially in aquatic organisms. Most studies have focussed on effects at the lowest levels of biological organisation, thus ecosystem-level effects remain the least well understood of all possible impacts, especially the long-term implications for higher-level consumers (Landsberg 2002). What new effects may be possible due to increased tissue toxin levels and exposure?
At the organ level, effects of MC exposure include necrosis and haemorrhaging of liver tissue, hepatic malfunction and heart stress in laboratory rats and fish (Best et al. 2001; Fischer et al. 2000; Heinze 1999; Dawson 1998; Falconer et al. 1981). In aquatic plants, MC exposure reduces growth rates, seed germination and alters photosynthetic pigmentation (Pflugmacher 2002; Romanowska-Duda & Tarczynska 2002; McElhiney et al. 2001; Casanova et al. 1999). Reduced embryo survival, developmental abnormalities and population changes have also been reported in fish (Liu et al. 2002; Oberemm 2001; Oberemm et al. 1999). These ‘developmental’ effects may have significant implications, as prolonged or recurrent toxic blooms which cover entire or successive breeding seasons (e.g. Baker & Humpage 1994), may prevent the development of larval and young stages of organisms. Other effects include reduced species diversity (MacKintosh et al. 1990), altered predator-prey interactions and other behavioural changes (Oberemm 2001).

Little is known regarding MC transfer in food webs. The sensitivity of aquatic organisms to MC exposure is known to vary with trophic level: fish, crustaceans and rotifers appear most tolerant (0.5 - 20 μgL⁻¹), followed by the phytoplankton (0.05 - 1 μg mL⁻¹) and macrophytes (0.001 - 0.05 μg mL⁻¹) (Christoffersen 1996). Kotak et al. (1996) examined MC-LR bioaccumulation in different trophic levels but found detectable MC in grazers only, with a strong possibility of MC-LR transfer to terrestrial food webs. Ferrão-Filho et al. (2002b) concluded that zooplankton were more efficient at MC transfer to higher trophic organisms than were other organisms such as molluscs. Such food chain transfers represent potential human risk in consumed organisms such as crayfish, mussels and fish (Saker & Eaglesham 1999). Moreover, they have implications for biomanipulation management approaches, as
consumers may remove toxic phytoplankton from the water (Boon et al. 1994; Matveev et al. 1994), only to accumulate it into other food web compartments.

The effects of CYN exposure are critically understudied. CYN is associated with severe hepatic necrosis (Terao et al. 1994), which results from inhibition of protein synthesis (Shaw et al. 2000) and possibly, DNA disruption (Shen et al. 2002). In mammals, CYN toxicity is associated with hepatic and kidney malfunction (Duy et al. 2000; Falconer et al. 1999). CYN has also been found to exert effects on molluscan neurones and neurotransmitter receptors (Kiss et al. 2002), and causes mortality in insects and cattle (Saker et al. 1999; Hiripi et al. 1998). Studies have not been conducted on chronic CYN exposure in any species (Carson 2000).

Current Algal Management Approaches

In 2001, the World Health Organisation (WHO) released an internationally accepted guide to the monitoring, assessment and management of toxic algal blooms (Chorus 2001). However, these guidelines have a definite focus on human health consequences rather than environmental risk. The nominated safe levels for drinking water are generally aimed at protecting human users; although accumulation of toxins into aquatic biota is mentioned as a potentially hazardous for consumers, no strategies for minimising ecological risks are proposed. In Australia, a global hotspot for toxic blooms, monitoring and management of toxic blooms occurs at both national and state levels (Jones et al. (2002); QDNR 2003). Risk levels are assigned based on cell and toxin concentration data, however, again, these data are not interpreted with respect to bioaccumulation and/or biomagnification.
The effects exerted by MC and CYN (summarised above) clearly indicate that consideration of ecological risk is required for a total approach to toxic bloom management. Guidelines which rely on cell concentration data for calculation of human risk are not adequate for this purpose. Similarly, whilst being critical for management of drinking water bodies, reactive management strategies such as flocculation, sedimentation and chlorination (Hoeger et al. 2004) are inadequate for ecological risk management, as these are aimed at removing algal cells and toxins already present in the system. Predictive modelling approaches, from which likely periods of bioaccumulation and biomagnification can be calculated, are best equipped to minimise the toxic effects of blooms regarding both human and ecological risk.

Challenges in modelling cyanotoxin accumulation

Modelling the bioaccumulation processes of cyanotoxins is likely to be highly complex as cyanotoxins, unlike most other toxicants, are produced within living cells. For most (synthetic) toxicants, the likelihood of bioaccumulation depends on bioavailability, and other species-specific factors including feeding, metabolism, growth dilution, and uptake efficiencies (McCarty & Mackay 1993). However, with cyanotoxins, bioavailability itself is governed by further factors including the type and concentration of available toxins, their spatial and temporal variability, and their uptake routes. Understanding and inclusion of these factors is critical for effective bioaccumulation modelling.

Many factors influence toxin production by cyanoprokaryote cells, though the significance of each remains poorly understood. Toxin content of blooms may be variable depending on the number and physiological status of algal cells (Orr & Jones
1998), and on various environmental conditions (Saker & Griffiths 2000; Utkilen & Gjølme 1995). Whilst a single species (or strain) can be identified as being toxigenic, this does not necessarily mean toxin production occurs (Chorus et al. 2001). Moreover, increased cell densities of cyanoprokaryotes do not necessarily correspond with increased toxicity (Bickel et al. 2000; Jacoby et al. 2000). Many studies have examined likely ‘triggers’ for toxin production and conditions under which maximal toxin production occurs. These include relationships between cell division rates and the toxin content of cells (e.g. Bickel et al. 2000; Orr & Jones 1998) and environmental parameters, such as nutrient, temperature and light conditions, (Long et al. 2001; Saker & Neilan 2001; Saker & Griffiths 2000). Toxin decomposition processes, which also play a role in toxin content, also depend on factors including time, pH, temperature, light, water quality and microbial activity (e.g. Chiswell et al. 1999; Lahti et al. 1997b).

Variability in toxin production is also related to the toxin composition of a given bloom, even for monospecific occurrences. For example, over 65 variants of microcystins have been identified (Carmichael 2001), though a natural bloom rarely contains more than ten (Geoff Eaglesham, National Centre for Environmental Toxicology, pers. comm.). Similarly, *Cylindrospermopsis raciborskii* may produce more than one variant of CYN (Norris et al. 2002; Falconer 1999; Hawkins et al. 1997). Additive or synergistic effects may also result from the presence of more than one toxin or toxin variant. The implication for bioaccumulation modelling here is that predictions of toxicity based on identification and cell counts of toxigenic species are not sufficient, as toxin production is highly variable within these parameters.
Furthermore, cyanotoxins may be represented by three different toxin fractions: Firstly, intracellular toxins are those held within algal cells. Secondly, extracellular toxins are those lysed from cells into the surrounding water. Lastly, incorporated toxins are INC or EXC toxins which, as a result of uptake and/or adsorption processes, become part of or attached to the cells of aquatic organisms. Incorporated toxins may be reversibly bound to protein phosphatases or other cellular enzymes, but do not include toxins lying in the alimentary canal of algal grazers, which may later pass out of the organism. Blooms of different cyanotoxins are comprised of different toxin fractions: for example, MC is usually intracellular (Long et al. 2001; Lahti et al. 1997b; Watanabe et al. 1992; Berg et al. 1987) though Wiedner et al. (2003) found extracellular concentrations to be 20% higher in cultures with higher light irradiance. In contrast, CYN is mostly extracellular (Carson 2000; Chiswell et al. 1999). Some evidence suggests variation in toxin fractions may be controlled even at the species level, according to environmental conditions (Hawkins et al. 2001).

The availability of the different toxin factions is critical to bioaccumulation modelling because of their influence on uptake route. Intracellular toxins may pose significant risk to organisms which ingest toxin-laden cells, either through grazing or accidental ingestion. Contrarily, aquatic plants may be at greater risk from extracellular toxins, if dermal uptake is possible. Incorporated toxins may represent risk for consumers not exposed to toxins directly (e.g. terrestrial birds). Consequently, the availability of particular toxin fractions will be significant in influencing bioaccumulation in a given set of organisms (e.g., intracellular toxins for grazers).
The temporal and spatial variability of toxins also impacts on the availability of toxins to aquatic biota. Temporal variation in each of the toxin fractions occurs as a result of production, decomposition and uptake processes during the progression of toxic blooms, which results in some fractions being more abundant at certain times. For example, these dynamics can be mapped for a *Microcystis* bloom (Figure 1): early stages of a toxic bloom are associated with mostly intracellular toxin, consistent with production and storage within cyanoprokaryote cells. However, as the bloom ages, some cells die and lyse, releasing small amounts of extracellular toxins into the water. Meanwhile, newly made cells continue to add to intracellular toxin levels. In the latter stages of the bloom, the situation becomes reversed: more cells lyse, the production of intracellular toxin is slowed, and extracellular toxin becomes more abundant. Furthermore, incorporated toxins may now be present in aquatic organisms capable of accumulation. Finally, during and after the bloom collapse, extracellular toxins may either persist or be rapidly degraded (Lahti *et al.* 1997a), whilst incorporated toxins remain until depuration and/or clearance occurs (Beattie *et al.* 2003; Yokoyama & Park 2003; Zurawell 2001; 1997; Falconer 1993).

Though Christoffersen (1996) suggested peak toxicity to occur in the later stages of toxic blooms, when cells lyse and release large amounts of toxins into the water, Figure 1 shows this may not necessarily be true for bioaccumulation effects. Rather, as each toxin fraction becomes dominant, certain exposure routes vary in importance, and organisms with those uptake routes become susceptible to toxin bioaccumulation and its effects. For example, plants cannot ingest algal cells and therefore are not at risk from intracellular toxins; hence, plants may not be predisposed to bioaccumulation early in bloom formation. Conversely, algal grazers
could be considered at higher risk during this time. The dynamics of toxin fraction availability is therefore a key issue to identifying peak bioaccumulation risk times in different aquatic organisms.

Spatial change in toxin fractions may also impact on bioavailability to aquatic organisms. Intracellular toxins are held within living cells, however the distribution of these cells is not homogenous in a system. As a result, concentrations of intracellular toxin may occur at certain depths, due to gas-vacuolate cells regulating buoyancy according to light preferences. Wind-induced cell (and therefore, intracellular toxin) accumulations may occur in surface species such as *Microcystis* (Webster 1990), whilst other subsurface species (e.g. *C. raciborskii*) may impact pelagic fauna. Furthermore, sinking, senescing cells contribute to an abundance of extracellular toxins in benthic habitats. Accordingly, the habitats of aquatic animals may predispose them to exposure to certain toxin fractions—for example, benthic animals and sinking, senescing cells releasing extracellular toxin.

A final factor influencing bioaccumulation likelihood is the individual capability of each aquatic animal to respond to cyanotoxins. Some organisms may be able to minimise or avoid exposure to cyanotoxins, so decreasing their likelihood for bioaccumulation. For example, Zurawell (2001) surmised that sessile filter feeders may experience greatest exposure as they are unable to move away, and have limited alternatives for food. However, coexistence of such animals with toxic algae over evolutionary time scales may also have given them the opportunity to develop tolerance to the toxins. Internal physiology may also be significant: in some organisms, interactions between toxins and internal proteins may occur (Kankaanpää
et al. 2002), whilst others may convert toxins to a different form or compound, particularly for CYN (Runnegar et al. 1994). These kinds of processes may limit or prevent bioaccumulation of cyanotoxins and their effects.

Clearly, the range of factors influencing cyanotoxin bioavailability, and thus bioaccumulation potential, makes constructing a predictive model for bioaccumulation difficult. However, the ecological effects associated with cyanotoxin bioaccumulation makes a clear case for developing such a model.

A model for predicting toxin bioaccumulation and its risks

Based on current knowledge of general bioaccumulation processes and of the specific nature of cyanotoxins, three factors are critical in enabling bioaccumulation of cyanotoxins: (1) that toxin is in a form available for uptake by a given organism (fraction availability); (2) that toxin is available in sufficiently high concentrations that bioaccumulation occurs (toxin threshold); and (3) that toxin is present for a sufficient period of time to allow accumulation into organismal tissues (exposure). The first of these, fraction availability, has already been discussed in the context of influencing bioaccumulation, through associations with different uptake routes.

The second requirement for bioaccumulation is suitable toxin concentration. Presumably, a threshold exists below which toxin accumulation does not occur, as the metabolic capabilities of aquatic organisms will regulate or prevent accumulation into tissues. Moreover, these are likely to be different between species, according to the metabolic capabilities of each (Figure 2). The first animal (‘non regulator’) has no metabolic capability to process (depurate, detoxify or metabolise) toxin, so, once
exposure occurs, toxin accumulates into the tissues. The second animal ('regulator'),
though exposed to the same toxin concentration, is capable of processing small
amounts (< 4 μg L\(^{-1}\)), and therefore prevents bioaccumulation from low-level
exposure. However, this capability fails at higher toxin levels, and eventually, a
threshold is reached (12 μg L\(^{-1}\)) at which toxins accumulate. It is difficult to estimate
likely thresholds for microcystin and cylindrospermopsin accumulation from current
literature, however this knowledge is critical to bioaccumulation management.

The third requirement for accumulation, minimum exposure time, may vary
depending on uptake route(s). For example, organisms accumulating toxins from
dermal exposure may need only short periods of time, whilst bioaccumulation from
orally-ingested cells may depend on feeding activity and metabolism, particularly as
these change according to reproductive status and season (e.g. Yokoyama & Park
2002; Vasconcelos et al. 2001).

Once bioaccumulation risk has been predicted based on fraction availability,
concentration and exposure time, determining the risk of ecological effects will
depend on internal tissue concentrations. Basing ecological risk assessment (ERA)
and management strategies on internal concentrations is considered more reliable than
doing so using water concentrations, because the issues of uptake and metabolism
have already been resolved (Sijm & Hermens 2000). In fact, use of internal tissue
concentrations is now highly recommended over other methods (Connell et al. 1999).
However, for this to succeed, it is crucial that problems such as preferential storage of
toxins into some organs have been identified, to avoid underestimation of toxin levels.
A strong knowledge base is required to predict likely sublethal/lethal effects
corresponding to internal toxin levels; unfortunately, next to no data are currently available regarding tissue toxin levels and sublethal/lethal toxicities for cyanotoxins.

Clearly, a useful and accurate management model will need to address the following four principal elements regarding the prediction of cyanotoxin bioaccumulation and its ecological effects in aquatic organisms:

1. knowledge of toxin concentrations in the water, including concentrations of each toxin fraction;
2. understanding of the likely toxin uptake routes for principal aquatic organisms of concern,
3. knowledge of the minimum concentration thresholds and exposure times required for bioaccumulation to occur, and
4. data linking internal tissue toxin concentrations with expected sublethal and lethal effects.

The model proposed below (Figure 3) combines these elements into a decision framework, utilizing a predictive modelling approach to toxic algal bloom management specifically regarding bioaccumulation. A worked example is provided at the end of this discussion.

The step-wise process (Figure 3) begins with monitoring of water bodies likely to be affected by toxic cyanoprokaryote blooms, based on prior history and/or current conditions (1). Algal sampling is conducted (2), and samples examined for potentially toxigenic species (3). Where these are present at concerning levels (Chorus 2001; Chorus & Bartram 1999), toxin testing is initiated (4). At this stage, all
procedures are already accepted algal monitoring protocols. However, this model further requires separate quantification of the intracellular and extracellular toxin fractions (5), as these are critical in determining bioaccumulation potential.

Evaluation of sampling results is then made by referring to a table of threshold values (6) for aquatic organisms, calculated from data of laboratory-executed and field-validated ecotoxicity experiments. As no such data are yet available, an exemplar table for microcystin, using arbitrary values, is provided in Table 1. The table works by identifying a species of concern and its likely toxin uptake route(s), then provides the specific threshold value(s) above which bioaccumulation is deemed likely.

Species with multiple uptake routes can still be evaluated by this method: it matters not how many routes are available, as long as each one of the thresholds is not exceeded. However, these require the use of caution factors (step 7); examples of which have also been included in Table 1. Caution values have been used in other ecotoxicological applications, often to account for the differences between laboratory measured lethal effects and the expected sublethal effects occurring in the field, or short versus long term experimental data (Markich & Camilleri 1996). Here, however, their role is to ensure that two sub-threshold fraction values are not interpreted as being risk-free. The caution values act to decrease the singular thresholds, after which the risk from each fraction should be re-evaluated using the new (reduced) threshold value. Using such factors provides ‘an extra margin of safety beyond the known or estimated sensitivities of aquatic organisms’ (Stephan et al. 1985).
Returning to the model, the likelihood of bioaccumulation is determined (8), by calculating if any thresholds have been exceeded, before or after application of caution factors. If so, tissue testing is initiated for those organisms considered at risk of bioaccumulation (9). The results of these tests can then be compared against known sublethal and lethal toxicities for similar internal concentrations in order to assess the likely ecological and human health effects of bioaccumulation (10).

A worked example

The following demonstrates the decision pathway for managers of a reservoir stocked with *Cherax* crayfish. Early in the bloom, algal sampling and enumeration identifies the predominance of potentially toxic *Microcystis*, prompting the need for toxin analysis. The first toxin analysis is performed; results obtained are 3 μg L⁻¹ intracellular (IC) toxin and 2 μg L⁻¹ extracellular (EXC) toxin. According to Table 1, the risk evaluation values for *Cherax* are 4 μg L⁻¹ for the intracellular fraction and 3 μg L⁻¹ for the extracellular fraction. Based on individual toxin fractions, no risk thresholds have been exceeded for *Cherax*. However, as *Cherax* has multiple uptake routes, caution factors must be introduced. As more than two sub-threshold values are present, each individual threshold value must be reduced by half. As a result, both thresholds are exceeded, requiring tissue toxin testing to be initiated, and the results used to determine possible ecological effects of bioaccumulation.

Model evaluation

This model is unique in addressing the challenges posed by predictive modelling of cyanotoxin bioaccumulation values. Inter-specific variability in toxin
production is addressed by regular toxin testing, based on the species composition of
the bloom. Temporal and spatial change in toxin fraction variability is accounted for
because the toxin tests separately quantify intracellular and extracellular fractions, an
each organism has likely uptake routes (and hence likely exposure risk) nominated.
Lastly, the responses of aquatic organisms to cyanotoxin exposure (uptake,
metabolism and adverse effects) are each considered, by dividing up the risk
evaluation table according to species.

The decision making process followed in this model may need to be repeated
several times in the event of a particularly long toxic bloom, especially where early
toxin sampling indicates levels below threshold values. In this event, monitoring
should be continued in order to ensure levels do not rise above risk concentrations at a
later date. Incorporating exposure times into this model is difficult, because of the
need to introduce almost continuous toxin testing to document fluctuations in toxin
concentrations between tests. It may therefore be useful to initiate toxin testing at
critical stages of a bloom, for example, ‘middle’, ‘late’ and ‘collapse’ stages as shown
in Figure 1, possibly using predictions from cell count data.

The model does not attempt to model the processes of uptake and depuration
rates, nor the possibility of metabolic transformation or conjugation of toxins,
although these have been studied in some organisms (Yokoyama & Park 2003;
Pflugmacher 2002; Zurawell 2001). The model also does not include the possibility of
incorporated toxins as a further uptake route (toxin source) for some animals (i.e.,
biomagnification). This is because incorporating the complexities of these may risk
underestimation of the bioaccumulation hazard, especially if all components are not properly accounted for (Franke et al. 1994).

This model could be easily integrated into current algal management approaches; especially as field officers would already be familiar with required sampling methods. Furthermore, there are no requirements for extra testing or data collection methods other than those used at present—except for performing toxin analyses on intracellular and extracellular, rather than total, fractions. The model also simplifies the rather complex concepts regarding algal bloom periodicity and toxicity.

Drawbacks to the model include potential doubling of toxin analyses costs by requiring the cell-bound and non-cell bound fractions to be determined separately, and for toxin analyses to be repeated in the event of long bloom periods, or in blooms where bioaccumulation effects persist past the bloom collapse. One downfall of using the risk threshold-approach (Table 1) is that it presumes uptake will always occur in the presence of toxin fractions. This may be likely for intracellular toxin: oral consumption of MC appears to correspond well with toxin uptake in gastropods (Yokoyama & Park 2002; Kotak et al. 1996), however this situation is uncertain for incorporated and extracellular toxins. The model also has a certain degree of error: results of toxin analysis may not reflect exactly the ratios of toxin fractions in the sampled water body, due to variability in sampling (for example, sample collection, transport and storage) and toxin detection methods. In particular, lysing of cells and/or degradation of dissolved fractions in storage may underestimate actual toxin concentrations (Nicholson & Burch 2001). Evaluating these levels will give only
gross indicator of the bioaccumulation risk, nonetheless, the model will still act as a valuable screening tool to minimise costly tissue testing.

Future improvements to this model could be the inclusion of exposure thresholds for time, and the impact of environmental parameters (pH, temperature) in affecting uptake and bioaccumulation processes. As research data become available, the model can be expanded to include more species. Possibly, this could include species not specified in the risk evaluation table by examining their trophic level and food preferences and hence likely modes of exposure (e.g. oral ingestion). The model may also be used with respect to human health risk assessment, for example, for decision-making regarding the suitability of aquatic organisms for consumption.

A number of challenges still exist with respect to determining the ecological effects (and human health risks) of cyanotoxin bioaccumulation. Through lack of studies, the range of sublethal effects associated with direct toxicity for many cyanotoxins remains unknown, let alone bioaccumulation effects. The inability to accurately detect incorporated MC and CYN also represents a considerable barrier for linking internal tissue concentrations with toxicity. This model represents an important step in toxic algae management, by considering the ecological effects of bioaccumulation and biomagnification of cyanotoxins in aquatic organisms.

Acknowledgements

This work was supported by an Australian Postgraduate Award and a support grant from Nebo Shire Council.
Figure 1. Speculated change in microcystin toxin fractions with *Microcystis* bloom progression

Figure 2. Bioaccumulation thresholds in animals of different metabolic capabilities.

Figure 3. Proposed step-wise model for monitoring and management of cyanotoxin bioaccumulation and its ecological effects. INC: intracellular; EXC: extracellular.
Table 1. Bioaccumulation risk threshold values for microcystin (example only). NA: not applicable; NR: not required (only one uptake route is considered to be of significance). †Possible route, unlikely to be major contributor (hence caution factors not required)

<table>
<thead>
<tr>
<th>Species</th>
<th>Primary exposure route(s)</th>
<th>Intracellular threshold</th>
<th>Extracellular threshold</th>
<th>Caution Factor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquatic plant Lemna sp.</td>
<td>Dermal</td>
<td>NA</td>
<td>1 μg L⁻¹</td>
<td>NR</td>
</tr>
<tr>
<td>Macroinvertebrates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubifex sp. (Tube worm)</td>
<td>Dermal; oral</td>
<td>2μg g⁻¹</td>
<td>1 μg L⁻¹†</td>
<td>NR</td>
</tr>
<tr>
<td>Thiara sp. (herbivorous snail)</td>
<td>Oral</td>
<td>0.5 μg g⁻¹</td>
<td>6 μg L⁻¹†</td>
<td>NR</td>
</tr>
<tr>
<td>Eusthenia sp. (carnivorous stonefly)</td>
<td>Incorporated (in prey)</td>
<td>NA (do not graze on algae)</td>
<td>4 μg L⁻¹†</td>
<td>NR</td>
</tr>
<tr>
<td>Higher animals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cherax sp. (omnivorous crayfish)</td>
<td>Oral; dermal</td>
<td>4 μg g⁻¹</td>
<td>3 μg L⁻¹</td>
<td>Reduce threshold values by 1/2 in presence of 2 sub-threshold values.</td>
</tr>
<tr>
<td>Bidyanus sp. (silver perch)</td>
<td>Oral</td>
<td>10 μg g⁻¹</td>
<td>4 μg L⁻¹</td>
<td>Reduce threshold values by 1/2 in presence of 2 sub-threshold values.</td>
</tr>
</tbody>
</table>
Toxin concentration

Bloom phase

- Intracellular
- Extracellular
- Incorporated
External toxin concentration (µg L⁻¹)

Tissue toxin concentration (µg kg⁻¹)

Level above which bioaccumulation occurs
- Non-regulator organism
- Regulator organism
(1) Observation/Notification of bloom

(2) Initiate algal sampling

(3) Are toxin-producing species present?
 - Yes
 - No

(4) Perform toxin testing

(5) Quantify INC/EXC toxin fractions

(6) Refer to table of threshold values

(7) Apply caution factors as necessary

(8) Is bioaccumulation likely?
 - Yes
 - No

(9) Initiate toxin testing in organisms of concern

(10) Evaluate internal toxin concentrations
 Ecological Risk Assessment / Human Health Risk.
REFERENCES

Padisák J. (1997). Cylindrospermopsis raciborskii (Woloszynska Seenayya et Subba Raju, an expanding highly adaptive cyanobacterium: worldwide distribution
Pflugmacher S. (2002). Possible allelopathic effects of cyanotoxins, with reference to
Microcystin-LR, in Aquatic Ecosystems. Environmental Toxicology 17, 407-413.

Prepas E.E., Kotak B.G., Campbell L.M., Evans J.C., Hrudey S.E. & Holmes C.F.
(1997). Accumulation and elimination of cyanobacterial heptatotoxins by the
freshwater clam Anodonta grandis simpsonia. Canadian Journal of Fisheries
and Aquatic Sciences 54(1), 41-46.

Algal Blooms Steering Committee, Queensland Department of Natural
Resources and Mines., Rocklea.

toxins from blue-green algae (cyanobacteria). Journal of Applied Phycology 6,
159-176.

Romanowska-Duda Z. & Tarczynska M. (2002). The influences of Microcystin-LR
and Hepatotoxic Cyanobacterial Extract on the Water Plant Spirodela
oligorrhiza. Environmental Toxicology 17, 434-440.

Runnegar M.T., Kong S.M., Zhong Y.Z., Ge J.L. & Lu S.C. (1994). The role of
glutathione in the toxicity of a novel cyanobacterial alkaloid
cylindrospermopxin in cultured rat hepatocytes. Biochemical and Biophysical
Research Communications 201(1), 235-241.

Saker M. & Neilan B.A. (2001). Varied diazotrophies, morphologies and toxicities of
genetically similar isolates of Cylindrospermopsis raciborskii (Nostocales,
Cyanophyceae) from Northern Australia. Applied and Environmental
Microbiology 67(4), 1839-1845.

cyanobacterium Cylindrospermopsis raciborskii in an outback region of North
Queensland. Environmental Toxicology 14, 179-182.

Saker M.L. & Eaglesham G.K. (1999). The accumulation of cylindrospermopxin from
the cyanobacterium Cylindrospermopsis raciborskii in tissues of the Redclaw
crayfish Cherax quadricarinatus. Toxicon 37, 1065-1077.

Saker M.L. & Griffths D.J. (2000). The effect of temperature on growth and
cylindrospermopxin content of seven isolates of the cyanobacterium
Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju from

depuration of the cyanobacterial toxin cylindrospermopxin in the freshwater
mussel Anodonta cygnea. Toxicon 43, 185-194.

