ABRASION FAILURE OF LINING RUBBER ON AGITATOR BLADES IN THE LEACHING CIRCUIT OF MINERAL PROCESSING INDUSTRIES

A.K.M. Shamsul Huda Akan

A thesis submitted in fulfilment of the requirements for the Degree of Master of Engineering

Process Engineering & Light Metals Centre
Faculty of Engineering and Physical Systems
Central Queensland University
Gladstone, Australia

March 2005
Dedicated To My Parents
I hereby declare that this submission is, to the best of my knowledge and belief, original, except as acknowledged in the text. I also state that the material contained herein has not been previously submitted, either in whole or in part, for a degree at Central Queensland University, or any other institution.

A.K.M/ Shamsul Huda Akan
Abstract

The failure of agitator blades was an issue of major concern in the leaching circuit of the Australian Magnesium Corporation (AMC) pilot plant in Gladstone. The aim of this project was to investigate the causes of the failure of the agitator blades and to make some recommendations to help avoid the problem in the future. At the start of this thesis, a comprehensive failure analysis was carried out in order to understand the potential failure mechanisms operating in the slurry tanks. A number of potential failure mechanisms were identified and these included erosive slurry wear of the rubber and chemical and/or thermal degradation of the rubber. These failure mechanisms may also act synergistically. An experimental programme of research was planned to investigate the separate influences of slurry wear and chemical and/or thermal degradation of the rubber. The results of these tests were then used to extend our understanding of the failure of the agitator blades.

A slurry erosion test has been developed in order to quantify the erosion of bromobutyl rubber. The study investigated the effects of particle size, erosion time, slurry weight concentration and specimen velocity. Wear was measured using surface roughness measurements and scanning electron microscopy (SEM) of the worn surfaces. The degree of wear was found to increase with increased particle size, slurry weight concentration and erosion time and the wear appear to be at a maximum at a nominal angle of impact of the particles of approximately 40°. Wear appeared to decrease with increasing slurry velocities, but this may have been due to changes in particle shape. One of the key factors in the development of damage on the surface of the rubber was found to be wear of the abrading particles and the condition of the abrading particles needs to be taken into account when interpreting the results of slurry wear tests. In general the experimental results were found to be in good agreement with the predictions from the literature and a model has been developed in order to obtain a better understanding of slurry erosion.

In addition to the slurry wear tests, the chemical degradation behaviour of bromobutyl rubber was investigated by measuring hardness (shore A) and surface morphology of the rubber after exposure of the rubber to acid and water at 70°C. In acid,
the rubber hardness increased with time and whereas in water alone, the rubber hardness decreased. This indicated that the acid immersion had a hardening effect on the rubber and this may have played some part in the failure.

From this work, it is apparent that both slurry wear and exposure to acid and/or temperature have an effect on the degradation of the rubber. Particle size and shape had a major effect on damage accumulation rates, with most damage occurring with large, sharp particles. For tests where the particle size was below 3.35 mm the damage accumulation rate was insignificant. Morphological studies of the worn surfaces suggest that a major mechanism of damage was the formation of cracks which penetrated the rubber and exposed the underlying steel agitator blades to the acidic environment. Hardening of the rubber by exposure to the acid solution would have decreased the resilience of the rubber and may have increased the effect of the slurry wear on crack formation, but at this stage the coupled effects of slurry wear and chemical/thermal degradation have not been explored.
Acknowledgements

Thanks are due to those without whose support this thesis would never have been completed. In particular to my supervisor, Professor Richard Clegg for his invaluable support, encouragement and wisdom. I am also indebted to my co-supervisor Dr. David M. Druskovich for his support and encouragement throughout my study at Central Queensland University (CQU).

My special thanks to Professor Waren Thorpe, Director, PELM Centre, Central Queensland University who approached and managed this project from Australian Magnesium Corporation (AMC).

I would also like to thank Mr. Gary Hoare for his generous help and advice during design and construction phase of the slurry erosion test apparatus and Jason Connor for his assistance and encouragement.

I am also grateful to Csabi Szeles for his generous help, support and friendship and Natalia Deeva for her assistance with SEM studies.

I must also thank to Benita Maudsley for her administrative support & assistance and Courtney Miles for his generous IT support.

Thanks to Central Queensland University and Australian Magnesium Corporation for providing financial assistance in the form of a university/industry collaborative grant.

And most importantly I extend my gratitude to my friends and family for their constant support and encouragement for the last two years, especially to my wife Sayeda and our children Qumrul, Rafiul and Hazera. Since she was born in July 2004, Hazera became a constant source of pleasure for my study. I am so much indebted to her.
Contents

List of Tables x
List of Figures xi

1 Introduction 1
 1.1 AMC process 2
 1.2 Failure mechanisms 3
 1.3 Slurry erosion 3
 1.4 Slurry erosion test method 4
 1.5 Rubber degradation test method 4
 1.6 Thesis structure 5
 1.7 References 6

2 Theory and Literature Review 7
 2.1 Theory 7
 2.1.1 Abrasive wear 8
 2.1.2 Slurry erosive wear 10
 2.1.3 Archad’s wear model 12
 2.2 Literature review 13
 2.2.1 Solid particles 14
 2.2.2 Slurry parameters 18
 2.2.3 Eroding material properties 24

3 Failure Analysis 31
 3.1 Failure criteria 31
 3.2 Failure modes 32
 3.3 Sample collection 32
 3.4 Process description 33
 3.4.1 Mixing stage 34
 3.4.2 Purification stage 34
 3.4.3 Filtration stage 34
 3.5 Visual inspection 34
 3.5.1 Summary of the visual inspection 36
 3.6 Particle analysis 37
 3.6.1 Particle screening 37
 3.6.2 Results and analysis 37
 3.6.3 XRD analysis 39
 3.6.4 Summary of the particle analysis 41
 3.7 SEM analysis 42
 3.7.1 Summary of the SEM analysis 44
3.8 Slurry chemical analysis 45
 3.8.1 Acid concentration and pH 45
 3.8.2 Solid concentration 46
 3.8.3 Slurry temperature 47
 3.8.4 Summary of the slurry chemical analysis 47

3.9 References 47

4 Chemical Degradation of Rubber 49
 4.1 Modes of degradation 49
 4.2 Bromobutyl rubber 50
 4.2.1 Chemical degradation 50
 4.2.2 Thermal degradation 52
 4.2.3 ASTM standard test methods for rubber 54
 4.2.4 Description of the equipment 54
 4.3 Experimental design and procedure 55
 4.3.1 Sample and solution preparation 55
 4.3.2 Test materials and scheduling 55
 4.4 Experimental results 56
 4.5 Discussion 60
 4.6 References 62

5 Erosion Modelling 63
 5.1 Erosion mechanism 63
 5.1.1 Finnie’s cutting model 64
 5.1.2 Bitter’s cutting and deformation wear model 64
 5.1.3 Arnold and Hutching’s model 66
 5.1.4 Proposed slurry erosion model 67
 5.2 References 71

6 Experimental Procedures for Slurry Abrasion Testing 72
 6.1 Standard slurry abrasion test methods 72
 6.1.1 Wet sand/rubber wheel abrasion tests 72
 6.1.2 Slurry jet test apparatus 73
 6.1.3 Slurry erosion test rig 74
 6.1.4 Repeated indentation test apparatus 75
 6.2 Description of the equipment 76
 6.3 Design and materials selection 78
 6.3.1 Slurry tank 78
 6.3.2 Agitator shaft and impeller blades 79
 6.3.3 Motor selection 80
 6.3.4 Specimen holders and arms 80
 6.4 Experimental design and procedure 80
 6.4.1 Sieving and slurry preparation 80
 6.4.2 Test material 81
 6.4.3 Wear testing procedure 82
 6.4.4 Rubber characterization 83

viii
A.4 Test schedule 124

B Experimental Results

B.1 Surface roughness measurements 126

B.2 SEM studies 131
List of Tables

2.1 Moh's hardness of a number of particulate materials 15
2.2 Relative abrasiveness of solids 24
2.3 Temperature window for various elastomers 27

3.1 Particle size distribution in magnesite ore used in the AMC processes 37
3.2 Impurity contents (quartz and dolomite) in magnesite ore used by AMC 40
3.3 Slurry parameters in the leaching circuit of AMC 46

4.1 Properties of natural and bromobutyl rubber 56
4.2 Rubber degradation test schedule 56

6.1 Physical properties of bromobutyl rubber 81
6.2 Test schedule for the particle size range 9.50 to 6.70 mm 82

A.1 Test schedule for particles size range 9.50 to 6.70 mm 124
A.2 Test schedule for particles size range 6.70 to 4.75 mm 124
A.3 Test schedule for particles size range 4.75 to 3.35 mm 125
A.4 Test schedule for particles size range 3.35 to 2.36 mm 125
List of Figures

1.01 The major manufacturing areas in the Australian Magnesium Corporation (AMC) 2

2.01 The side view of the conical cutting tool model of abrasion process 8
2.02 Schematic view of micro-plowing mechanism of abrasive wear process 9
2.03 Micro-cutting mechanisms occur as a result of abrasion wear 9
2.04 Micro-fracture mechanism of abrasion 9
2.05 Two and three-body abrasive wear due to contact of particle and surface (a) two-body abrasion and (b) three-body abrasion 10
2.06 Forces act on a particle in contact with a solid during erosion are shown in the above diagram 10
2.07 Solid particles impacting on a material surface during erosion 11
2.08 Wear rate as a function of SiC particle size for copper in erosion and in two-body and three-body abrasion 14
2.09 Variation in wear rate for mild steel as a function of mineral hardness 16
2.10 Mild steel erosion rate at various ash particle impingement velocities 17
2.11 Variation in wear rate as a function of angle of incidence for erosion jet conditions in a variety of materials 18
2.12 The influence of test temperature on the steady-state friction coefficient of coating with nanocrystalline grains and coating with conventional grains 19
2.13 Comparison of predicted impact velocities (full lines) and experimental values (data points) for glass beads mean diameter 231 and 550 micrometer tested in water glycerin solutions 20
2.14 Relationship between flow velocity, angle of attack and relative erosion rate (PC denotes plain concrete and FRC denotes fibered-reinforced concrete) 21
2.15 Relationship between wear rate and silica sand concentration for polyurethane, elastomers SUS403 and rubber material 23
2.16 Dependence of oxygen uptake on time for butyl rubber at 220°, 225° and 230°C 25
2.17 Variation in wear rate for polyurethanes as a function of Shore D hardness 26
2.18 Specific energy for deformation wear as a function of deformation wear rate for steel, alumina and Pyrex glass 28

3.01 Failed bromobutyl rubber found in the slurry mixing tank of AMC 33
3.02 Various stages of the leaching circuit in the AMC demonstration plant 33
3.03 A failed agitator blades in the slurry mixing tank of the AMC demonstration plant 36
3.04 The size fractions of magnesite ore used in the AMC process 38
3.05 The screen analysis graph of cumulative undersize weight fraction against mean particle size 39
3.06 Percentage mass of quartz present in magnesite in a wide range of particle size 41
3.07 Back scattered SEM image of bromobutyl rubber at the blade-tip after approximately five months in the service 42
3.08 Backscattered electron micrograph of bromobutyl rubber used on the upper side of an agitator blade near the blade-tip after six months in service 43
3.09 Back scattered electron micrograph of bromobutyl rubber on agitator blades which failed after eight months in service 44

4.01 Typical solovolysis reaction process 51
4.02 The figure represents an equation of general scheme of metathesis. Me denotes a catalyst system consisting of catalyst/co-catalyst pair 51
4.03 Figure represents an equation of acidic degradation of poly-acetaldehyde where main-chain scission and de-polymerization occurs before termination 52
4.04 Dependence of oxygen intake on time for butyl rubber under 220, 225 and 230°C 53
4.05 Schematic diagram of rubber degradation test method 55
4.06 A comparison of hardness (shore A) between natural and bromobutyl rubber in magnesium chloride liquor (with 5% excess hydrochloric acid) over a period of 10-week 57
4.07 A comparison of hardness (shore A) between bromobutyl rubber in water and in magnesium chloride liquor (with 5% excess hydrochloric acid) over a period of 10-week 58
4.08 Surface topography of bromobutyl rubber (a) virgin rubber (b) tested rubber 59
4.09 Surface topography of bromobutyl rubber (a) virgin rubber (b) tested rubber 59
4.10 EDS analysis of bromobutyl rubber (a) virgin rubber stored in room temperature (b) tested rubber in magnesium chloride having 5% excess HCl at an ambient temperature 70°C for a period of 3-month 60

5.01 Schematic diagram of particle impact on a cylinder 64
5.02 Schematic diagram of particles impact around the rubber 68

6.01 Schematic diagram of the wet sand/rubber wheel abrasion test apparatus 73
6.02 Schematic view of the slurry jet test apparatus 74
6.03 Schematic diagram of the slurry-pot erosion test apparatus used by Clark and Wong 75
6.04 Schematic diagram of the repeated indentation test apparatus constructed and used by Arnold and Hutchings 76
6.05 Schematic diagram of the slurry erosion test apparatus 77
6.06 A photograph of bromobutyl rubber test specimen 78
6.07 Photograph of the slurry-pot erosion test rig 79
6.08 Photograph of a cylindrical specimen holder wrapped with a bromobutyl rubber stripe attached to the horizontal shaft 80
6.09 A sectional view of the specimen holder wrapped with the bromobutyl rubber specimen 82

7.01 Bbromobutyl rubber specimen wrapped around a specimen holder 85
7.02 Surface roughness of a virgin rubber specimen against nominal angle of attack 87
7.03 Surface roughness of bromobutyl rubber samples against nominal impingement angle at 1%, 5% and 10% slurry concentration for magnesite particle size range 6.70 to 4.75 mm 88

xiv
7.04 Variation of surface roughening of bromobutyl rubber at constant slurry concentration (10%) for nominal particle size 8.10, 5.72, 4.05 and 2.85 mm

7.05 Surface roughness of three bromobutyl rubber samples against nominal impingement angle at 1%, 5% and 10% slurry concentration for nominal particle size 8.10 mm

7.06 Surface roughness of tested bromobutyl rubber samples for 50, 100 and 200 hours of erosion time by 8.10 mm particle size in constant slurry concentration (10%) 91

7.07 Surface roughness of tested bromobutyl rubber samples for specimen velocity 7.01 and 5.50 m/s at a constant slurry concentration by 8.10 mm size particles 92

7.08 SEM micrograph of damage produced on rubber specimen tested at 1% slurry concentration 93

7.09 SEM micrograph of damage produced on rubber specimen tested at 5% slurry concentration 94

7.10 SEM micrograph of damage produced on rubber specimen tested at 10% slurry concentration 94

7.11 The variation of damage produced on bromobutyl rubber samples tested for 50 hours in erosion by particles size range 9.50 to 6.70 mm at 10% slurry concentration 95

7.12 The variation of damage produced on bromobutyl rubber samples tested for 100 hours in erosion by particles size range 9.50 to 6.70 mm at 10% slurry concentration 96

7.13 The variation of damage produced on bromobutyl rubber samples tested for 200 hours in erosion by particles size range 9.50 to 6.70 mm at 10% slurry concentration 96

7.14 Damage produced on bromobutyl rubber samples tested in magnesite with 10% concentration by particles size range 9.50 to 6.70 mm 98

7.15 Damage produced on bromobutyl rubber samples tested in magnesite with 10% concentration by particles size range 6.70 to 4.75 mm 98

7.16 Damage produced on bromobutyl rubber samples tested in magnesite with 10% concentration by particles size range 4.75 to 3.35 mm 99
7.17 Damage produced on bromobutyl rubber samples tested in magnesite with 10% concentration by particles size range 3.35 to 2.36 mm

7.18 SEM micrograph of rubber specimen tested at 5.50 m/s specimen velocity (with 10% slurry concentration, 50 hours duration period and particles size range 9.50 to 6.70 mm)

7.19 SEM micrograph of rubber specimen tested at 7.01 m/s specimen velocity (with 10% slurry concentration, 50 hours duration period and particles size range 9.50 to 6.70 mm)

7.20 The variation of mass degradation of magnesite particles used in the slurry erosion tester

7.21 The shape of the magnesite particles (a) before testing (b) after testing

8.01 Variation of surface roughening of bromobutyl rubber at constant slurry concentration (10%) for nominal particle size 9.50 to 6.70, 6.70 to 4.75, 4.75 to 3.35 and 3.35 to 2.36 mm

8.02 Surface roughness of three bromobutyl rubber samples against nominal impingement angle at 1%, 5% and 10% slurry concentration for magnesite particles size range 6.70 to 4.75 mm

8.03 Surface roughness of tested bromobutyl rubber samples for 50, 100 and 200 hours of erosion time by 6.70 to 4.75 mm particles size range in constant slurry concentration (10%)

8.04 Surface roughness of tested bromobutyl rubber samples for specimen-tip velocity 7.01 and 5.50 m/s at a constant slurry concentration by 6.70 to 4.75 mm size range particles

8.05 Damage to bromobutyl rubber as a result of slurry concentration at 1, 5 and 10% by particles size range 4.75 to 3.35 mm

8.06 Surface damage to bromobutyl rubber due to erosion duration at (a) 50 (b) 100 and (c) 200 hours by particles size range 4.75 to 3.35 mm

8.07 Variation in surface roughness due to specimen velocity (a) 5.50 m/s and (b) 7.01 m/s in magnesite slurries having particle size range 6.70 to 4.75 mm