An Investigation of Brake Application Delays in Australian Train Brake Systems

By

Ian Ripley

Submitted in fulfilment of the requirements for the degree of Master of Engineering

at the

James Goldston Faculty of Engineering and Physical Systems

Central Queensland University

Rockhampton, Qld.

Submission Date:

October 2004
Abstract

An investigation of brake application delays in Australian train brake systems began with a literature review of pneumatic train braking systems. Data located in the review gave examples of brake application delays of pre 1990 designs from the U.K., India and North America. Information on application delays on later Australian designs was scarce. Reading of literature has shown a difference between the Australian and North American control valves in the way the propagation of the pressure reduction rate in the brake pipe is maintained. Control valves of the North American style allow the brake pipe air to be connected for a short time to a small cavity or quick service volume of each valve. The quick service volume is then released to atmosphere. The action of exhausting a small amount of air from the brake pipe helps to ensure a propagation of an adequate pressure reduction rate as it travels to the next valve. Australian control valves rely on the ratio of the volume of brake pipe between control valves and the size of the quick service volume or ‘bulb’ to ensure the propagation of an adequate pressure reduction as it travels to the next valve. The air in a bulb of an Australian valve is not expelled to atmosphere until a brake release is made.

The research explored possible reductions in application delays by utilizing an experimental pipe test rack that included 4 control valves and 120 meters of brake pipe. Experiments with different configurations of exhaust orifices or chokes, valves and branch pipe lengths that supplied the valves gave a record acquired by data acquisition of the timing of each valve and the local pressure drop from a valve or each valve for comparison.

Experiments with exhaust chokes that gave a reduction drop rate in the brake pipe that approached the minimum required to operate a control valve resulted in instability of the application operation of the control valve. The quick service volume of different sizes was included in the experiments to give comparisons in the propagation of the pressure reduction toward the end of a long train. Further increases into the size of the bulb of a control valve to enhance the propagation features toward the end of a long train are discussed. The branch pipe with different diameters from 12 mm to 20 mm and lengths from 160 mm to 800 mm when fitted to an adaptor pipe bracket were investigated and results show that larger diameters gave larger gulps in the brake pipe.

Other components that were studied included the pipe bracket that is fitted on some control valves. The pipe bracket and isolation cock was found to add 282 mm of additional length to the air path and while not changing the operation of the valve, the results showed a smaller drop in local pressure in the brake pipe to assist the pressure reduction rate than shown in valves without pipe brackets.
Title

An Investigation of Brake Application Delays in Australian Train Brake Systems

By

Ian Ripley

Submitted in fulfilment of the requirements for the degree of Master of Engineering at the

James Goldston Faculty of Engineering and Physical Systems

Central Queensland University

Rockhampton, Qld.

Submission Date:

October 2004
Table of Contents

Abstract ... i
Title... ii
Table of Contents .. iii
List of Figures .. vi
List of Tables .. vii
Glossary of Terms .. ix
Publications list ... xi
Acknowledgments ... xii
Declaration ... xiii

1. Introduction ... 1
 1.1 Aims and Objectives .. 1
 1.2 Outline of the thesis ... 2

2. Literature Review ... 3
 2.1 Brake Systems ... 3
 2.1.1 The automatic air brake with direct release system 3
 2.1.2 Automatic air brake graduated - release ... 4
 2.1.3 Vacuum automatic brake ... 5
 2.2 Valve Terminology .. 6
 2.2.1 Triple Valve .. 6
 2.2.2 Service Portion and Emergency Portions .. 7
 2.2.3 Distributor ... 8
 2.2.4 Control valve ... 8
 2.3 The Development of the Railway Air Brake ... 9
 2.3.1 First Air Brakes ... 9
 2.3.2 American Westinghouse Triple Valve Developments and Improvements 12
 2.3.3 Operation of an American Control Valve ... 15
 2.3.4 American Reservoir Sizes .. 16
 2.3.5 Retainers or Grade control valves ... 18
 2.3.6 Australian Triple Valve Developments and Improvements 19
 2.3.8 The Major Valve manufactures Worldwide ... 25
2.4. Australian Control Valve ... 25
 2.4.1 Operation of the Australian Control Valve 25
 2.4.2 Australian Reservoir sizes ... 27
 2.4.3 Australian bulb sizes .. 28
 2.4.4 Retainers or Grade Control Valves ... 29

2.5. Brake pipes and Propagation Rates .. 30
 2.5.1 Brake Pipes ... 30
 2.5.2 American brake pipe lengths ... 38
 2.5.3 Australian brake pipe lengths ... 39
 2.5.4 Brake Cylinder fill times and brake pipe propagation rate charts 39

2.6 Comparison of American and Australian triple valves 44

2.7 Conclusion .. 46

3. Theory and Equipment ... 47
 3.1. Pipe Equations ... 47
 3.1.1 Sonic Velocity Calculation ... 49
 3.1.2 Calculation of pipe length for QR VSAL/S wagons 49
 3.2 Equipment ... 50

3.3 Data Acquisition and Processing .. 55

4. Experiments and Results ... 57
 4.1 The rate and size of reduction of the gulp in a brake pipe 57
 4.1.1 Introduction ... 57
 4.1.2 Equipment ... 58
 4.1.3 Method .. 58
 4.1.4 Results .. 60
 4.1.5 Discussion ... 64

 4.2 Local Pressure reduction using different branch pipe sizes 66
 4.2.1 Introduction ... 66
 4.2.2 Equipment ... 67
 4.2.3 Method .. 67
 4.2.4 Results .. 68
 4.2.5 Discussion ... 69
List of Figures

Figure 1: Schematic of a brake system. ... 1
Figure 2: Automatic air brake direct release system. ... 3
Figure 3: Automatic air brake graduated - release system. 4
Figure 4: Vacuum automatic air brake system. ... 5
Figure 5: First triple-valve valve of Westinghouse. (Westinghouse 1873) 7
Figure 6: “AB” triple valve. (Westinghouse Air Brake Company 1945) 8
Figure 7: The Westinghouse straight air brake. (Westinghouse 1869) 10
Figure 8: First triple valve with a slide valve. (Westinghouse 1875) 11
Figure 9: The Westinghouse American development tree. 12
Figure 10: The ‘K’ triple valve. (Westinghouse 1902) 13
Figure 11: American relayed brake system. (Bureau 2002) 18
Figure 12: Grade control valve. (Westinghouse Brakes Australia) 19
Figure 13: The Westinghouse Australian development tree. 19
Figure 14: Australian basic control valve system. .. 21
Figure 15: The 3½ " improved triple valve. (QR_Manual 1995) 21
Figure 16: The AF 2 type triple valve. (QR-Manual 1995) 22
Figure 17: The basic ‘W’ type triple valve. (Westinghouse Brakes Australia) .. 23
Figure 18: Added devices to the ‘W’ triple valve. (Westinghouse Brakes Australia) 23
Figure 19: A combined Reservoir showing separate chambers. 27
Figure 20: Multi-compartment reservoir.. 28
Figure 21: Control valve with bulb cavities placement 29
Figure 22: Q6 exhaust choke used on mineral freight wagons. 30
Figure 23: 32mm brake pipe with 90° 300mm bends 31
Figure 24: Brake pipe with equivalent and actual lengths. (Murtaza 1993) 32
Figure 25: Comparison of brake pipe diameters over 57 cars. (Murtaza 1989) ... 33
Figure 26: The braking demand model. (Murtaza 1989) 34
Figure 27: Results from a train pipe length of 690 m. (Murtaza 1989) 35
Figure 28: Full service application with an unrestricted exhaust choke. (Leigh 1990) .. 37
Figure 29: Full service application, with a restricted exhaust choke. (Leigh 1990) .. 37
Figure 30: ABD tests for 150 cars of 50ft each in length. (WABCO 1996) 40
Figure 31: AAR tests of ABDW in 1981. (WABCO 1996) 40
Figure 32: AAR tests of ABDX in 1989. (WABCO 1996) 41
Figure 33: ABDW and ABD tests on a full service reduction........................... 42
Figure 34: Results from a test rack and a simulated model. (Johnson 1986) 43
List of Tables

Table 1: Brake Control Valve Comparison... 24
Table 2: Times of American Valves. .. 44
Table 3: Propagation rates of American and Australian triple valves. 45
Table 4: Propagation rates of triple valves at the 25th car.. 46
Table 5: Brake pipe pressures from a single control valve operation.......................... 61
Table 6: Brake pipe pressures from 4 control valve operation. 63
Table 7: Branch pipe length and sizes.. 68
Table 8: brake pipe pressures from different branch pipes....................................... 69
Table 9: The local reduction in brake pipe pressures... 73
Table 10: Branch sizes and port sizes.. 79
Table 11: Pressures and times at transducer P6. ... 79
Table 12: Test numbers with various pipe brackets... 80
Table 13: Pressures from control valves with and without a pipe bracket............... 80
Table 14: Times when medium and large bulbs have filled. 87
Glossary of Terms

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAR</td>
<td>Association of American Railroads</td>
</tr>
<tr>
<td>AAV</td>
<td>Accelerated Application Valve</td>
</tr>
<tr>
<td>AB</td>
<td>North American Westinghouse triple valve (1936)</td>
</tr>
<tr>
<td>AF2</td>
<td>Australian freight triple valve (1960)</td>
</tr>
<tr>
<td>ABD</td>
<td>North American Westinghouse triple valve (1965)</td>
</tr>
<tr>
<td>ABDW</td>
<td>North American Westinghouse triple valve (1976)</td>
</tr>
<tr>
<td>BCP</td>
<td>Brake Cylinder Pressure</td>
</tr>
<tr>
<td>BP</td>
<td>Brake Pipe</td>
</tr>
<tr>
<td>DB-60</td>
<td>North American triple valve by New York Air Brake Company</td>
</tr>
<tr>
<td>ES</td>
<td>United Kingdom triple valve by Davies and Metcalf</td>
</tr>
<tr>
<td>EX</td>
<td>Normal exhaust position, grade control valve</td>
</tr>
<tr>
<td>IP</td>
<td>Intermediate pressure position, grade control valve</td>
</tr>
<tr>
<td>ITV</td>
<td>Australian improved triple valve (1950)</td>
</tr>
<tr>
<td>HP</td>
<td>High pressure position, grade control valve</td>
</tr>
<tr>
<td>K</td>
<td>North American triple valve (1902)</td>
</tr>
<tr>
<td>KE</td>
<td>European triple valve by Knorr-Bremese</td>
</tr>
<tr>
<td>kPa</td>
<td>Kilopascal SI unit of pressure</td>
</tr>
<tr>
<td>I.D</td>
<td>Internal diameter</td>
</tr>
<tr>
<td>NB</td>
<td>Nominal bore (pipe size)</td>
</tr>
<tr>
<td>m/s</td>
<td>Velocity, meters per second</td>
</tr>
<tr>
<td>P.B.</td>
<td>Pipe Bracket</td>
</tr>
<tr>
<td>PSI</td>
<td>Pounds per square inch unit of pressure</td>
</tr>
<tr>
<td>PSIA</td>
<td>Pounds per square inch atmosphere</td>
</tr>
<tr>
<td>PSIG</td>
<td>Pounds per square inch gauge</td>
</tr>
<tr>
<td>SW4</td>
<td>Sab Wabco distributor</td>
</tr>
<tr>
<td>Q6</td>
<td>Queensland rail permanent restrictor grade control valve</td>
</tr>
<tr>
<td>Q.A</td>
<td>Quick Action</td>
</tr>
<tr>
<td>Q.S</td>
<td>Quick Service bulb</td>
</tr>
<tr>
<td>Q.S.1</td>
<td>Preliminary Quick Service bulb</td>
</tr>
<tr>
<td>Q.S.2</td>
<td>Secondary quick service bulb</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>UIC</td>
<td>International Union of Railways</td>
</tr>
<tr>
<td>VSH</td>
<td>Queensland Rail 100t mineral hopper wagon</td>
</tr>
<tr>
<td>VSAL</td>
<td>Queensland Rail 104t lead tandem mineral hopper wagon</td>
</tr>
<tr>
<td>VSAS</td>
<td>Queensland Rail 104t slave tandem mineral hopper wagon</td>
</tr>
<tr>
<td>WF</td>
<td>Australian Westinghouse ‘W’ series diaphragm and poppet valve triple valve (1967)</td>
</tr>
</tbody>
</table>
Glossary of functions

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerated Release</td>
<td>Each control valve connects a reservoir of initial BP air to the BP in a brake release application to assist BP build up</td>
</tr>
<tr>
<td>Accelerated Application Valve</td>
<td>Vents air from the BP whenever a pressure reduction is initiated</td>
</tr>
<tr>
<td>Accelerated release reservoir</td>
<td>Supplies air to the brake pipe on a brake release</td>
</tr>
<tr>
<td>Auxiliary reservoir</td>
<td>Holds brake pipe air for triple valve differential operation</td>
</tr>
<tr>
<td>Bulb</td>
<td>Term for control valve quick service volume</td>
</tr>
<tr>
<td>Dummy brake cylinder volume</td>
<td>Stores air in a brake application</td>
</tr>
<tr>
<td>End-of-Train</td>
<td>Electronic operated valve to exhaust the brake pipe air at the rear of a train</td>
</tr>
<tr>
<td>Gulp</td>
<td>Term for the sharp local drop of air pressure seen in a brake pipe in a control valve operation</td>
</tr>
<tr>
<td>Inshot</td>
<td>Allows an initial quick build up of BCP, then with chokes restricts auxiliary air to the brake cylinders</td>
</tr>
<tr>
<td>Supplementary reservoir</td>
<td>Used in conjunction with the dummy brake cylinder to supply air to the brake cylinders</td>
</tr>
<tr>
<td>Locomotive brake controller</td>
<td>Controls the reduction and charge of the train brake pipe</td>
</tr>
<tr>
<td>Local gulp</td>
<td>Term for drop of air pressure seen at the control valve</td>
</tr>
<tr>
<td>Quick action</td>
<td>Assists reducing BP in emergency applications by connecting the BP to a small chamber</td>
</tr>
<tr>
<td>Quick service</td>
<td>Connects the brake pipe air to the brake cylinder or to atmosphere so each control valve assists the transmission of brake pipe air reduction in a service application</td>
</tr>
<tr>
<td>Release ensuring</td>
<td>Connects the auxiliary to atmosphere only on cars where the pressure differential in the BP exceeds the pressure in the diaphragm in the release ensuring valve</td>
</tr>
<tr>
<td>Retarded recharge</td>
<td>Restricts flow into the emergency and auxiliary reservoirs on a brake release application</td>
</tr>
<tr>
<td>Reduction ensuring</td>
<td>Connects air from either the quick service bulb or BP to the brake cylinder and ensures a sufficient initial reduction of BP is produced through out the train.</td>
</tr>
</tbody>
</table>
Publications list

Unpublished Industry Report (Confidential)

Unpublished Industry Report (Confidential)

Ripley. I *Development of the Railway Air Brake Triple Valve in America and Australia* June 2003
Acknowledgments

This thesis was possible due to the scholarship awarded by the Rail Co-Operative Research Centre and is gratefully acknowledged for the period of the research program.

Acknowledgement is extended to Dr Colin Cole as the principle supervisor and to Dr Masud Khan co-supervisor for assisting with advice in experimental testing and reading of this thesis.

Central Queensland University engineering workshop staff Mr Gary Hoare and Mr Ian Major are both gratefully thanked for the assistance in the setting up of the brake pipe test rig in the heavy testing laboratory at CQU.

The assistance and use of braking equipment from Queensland Railway is acknowledged as is the suggestions and advice from Mr Barry Payne and Mr David Fuhrmeister.

Involvement by Australian rail industry personnel including Mr Stephen White and Mr Bruce Sismey for the information supplied is acknowledged.

Westinghouse Australia for the advice and information on their braking system is acknowledged as was the support by Mr Kevin Heslop.

Further thanks must go to my brother Robert and my sister Nanette for their personal help over the period of this project.
Declaration

I declare to the best of my knowledge this thesis does not contain any material previously published or written by another person except where due reference is made in the text. The contents of this thesis have not been included in any other work submitted by the author for another degree or diploma at any other tertiary institution.

Signed: Dated:..............................